Method of Ensembles: Partition Functions

Dr. Neelabh Srivastava
(Assistant Professor)
Department of Physics
Mahatma Gandhi Central University
Motihari-845401, Bihar
E-mail: neelabh@mgcub.ac.in

Programme: M.Sc. Physics
Semester: 2nd
In earlier lectures, we have discussed the concept of Ensembles viz. Microcanonical, Canonical and Grand-canonical.

Herein, we will use that concept in deriving the thermodynamical functions of a thermodynamic system.

Before we proceed, let us recall the concept of partition function.
The Maxwell-Boltzmann distribution function is given by,

\[n_i = g_i e^{-\alpha} e^{-\beta \varepsilon_i} \quad (i = 1, 2, 3, \ldots, k) \]

This equation gives the number of gas molecules in the \(i \)th cell and known as Maxwell-Boltzmann law of energy distribution.

simply,

\[
N = \sum_i n_i = \sum_i \left(g_i e^{-\alpha} e^{-\beta \varepsilon_i} \right) = e^{-\alpha} \sum_i g_i e^{-\beta \varepsilon_i} = A.Z
\]

where,

\[
A = e^{-\alpha} \quad \text{and} \quad Z = \sum_i g_i e^{-\beta \varepsilon_i}
\]

Occupation index,

\[
f_i = \frac{n_i}{g_i} = \frac{N}{Z} e^{-\beta \varepsilon_i}
\]

This Boltzmann distribution applies to systems which have \textbf{distinguishable} particles and \(N, V \) and \(U \) are fixed. The Maxwell-Boltzmann Distribution is applicable only to dilute gases.
The quantity \(Z \) represents the sum of the Boltzmann factor over all the accessible states and is called the partition function \((\text{derived from German term Zustandssummae}) \). The quantity \(Z \) indicates how the gas molecules of an assembly are distributed or partitioned among the various energy levels.

The energy term in the expression for partition function does not mean only the translational component but also may contain the components corresponding to other degrees of freedom too e.g. rotational, vibrational and electronic too.

\[
A = \frac{N}{Z} \Rightarrow n_i = \frac{Ng_i e^{-\beta \varepsilon_i}}{\sum_i g_i e^{-\beta \varepsilon_i}}
\]

\[
\text{Probability, } P(\varepsilon_i) = \frac{n_i}{N} = \frac{g_i e^{-\beta \varepsilon_i}}{\sum_i g_i e^{-\beta \varepsilon_i}}
\]

\[
Z = \sum_i g_i e^{-\beta \varepsilon_i}
\]
This partition function can be used for calculating the various thermodynamical properties of ensembles having independent systems (obeying classical laws) irrespective of whether the ensembles have distinguishable or indistinguishable independent systems.

Consider an assembly of classical gas where the distribution of energy states is considered to be continuous. So, the number of energy levels in the momentum range \(p \) and \((p+dp) \) is given by:

\[
g(p)dp = \frac{4\pi V p^2}{h^3} dp
\]
Number of energy levels between energy range ε and $(\varepsilon + d\varepsilon)$ is given by –

$$g(\varepsilon) d\varepsilon = \frac{2\pi V (2m)^{3/2} \varepsilon^{1/2}}{h^3} d\varepsilon$$

Since, the distribution of energy states is continuous, therefore

$$Z = \sum_i g_i e^{-\varepsilon_i/kT} = \int_0^\infty g(\varepsilon) d\varepsilon e^{-\varepsilon/kT}$$

$$Z = \frac{2\pi V (2m)^{3/2}}{h^3} \int_0^\infty \varepsilon^{1/2} e^{-\varepsilon/kT} d\varepsilon$$
After solving, we get

\[Z = \frac{2\pi V (2m)^{3/2}}{h^3} \frac{\sqrt{\pi}}{2} (kT)^{3/2} \]

This gives the translational partition function for a gas molecule.
Partition Function and its relation
Thermodynamic Quantities

1. with Entropy (S):
Consider an assembly of ideal gas molecules obeying M-B distribution law and according to Boltzmann’s entropy relation –

\[S = k \ln W = k \ln \Omega \quad \text{.........}(i) \]

The maximum thermodynamic probability is given by -

\[W = N! \prod_i \frac{g_i^{n_i}}{n_i!} \quad \text{.........}(ii) \]
Taking logarithms and apply Stirling’s approximation, we get
\[\ln W = N \ln N + \sum_i \left(n_i \ln g_i - n_i \ln n_i \right) \]
\ldots\ldots(iii)

According to M-B distribution law
\[n_i = g_i e^{-\alpha} e^{-\beta \varepsilon_i} = g_i A e^{-\beta \varepsilon_i} \]

Now, from eq^n. (iii)
\[\ln W = N \ln N + \sum_i n_i \ln g_i - \sum_i n_i \ln g_i - \sum_i n_i \ln A + \sum_i n_i \beta \varepsilon_i \]

Putting,
\[\sum_i n_i = N \quad and \quad \sum_i n_i \varepsilon_i = E \]

\[\ln W = N \ln N - N \ln A + \beta E = N \ln \frac{N}{A} + \beta E \]

\[\ln W = N \ln Z + \beta E \]
\[S = k \ln W = k(N \ln Z + \beta E) = Nk \ln Z + \frac{kE}{kT} \]

\[S = Nk \ln Z + \frac{E}{T} \quad \ldots \ldots \text{(iv)} \]

but for an ideal gas, \[E = \frac{3}{2} NkT \quad \ldots \ldots \text{(v)} \]

from (iv) and (v),

\[S = Nk \ln Z + \frac{3}{2} Nk \quad \ldots \ldots \text{(vi)} \]
2. with Helmholtz Free Energy (F):

\[F = E - TS = E - T \left(Nk \ln Z + \frac{E}{T} \right) \]

\[F = -NkT \ln Z \] \hspace{1cm} (vii)

3. with Total Energy (E):

Average energy of a system of \(N \) particles is given by,

\[\overline{E} = \frac{E}{N} = \frac{\sum n_i \varepsilon_i}{\sum n_i} = \frac{\sum g_i A_i \varepsilon_i e^{-\beta \varepsilon_i}}{\sum g_i A_i e^{-\beta \varepsilon_i}} \]

\[\overline{E} = \frac{\sum g_i \varepsilon_i e^{-\beta \varepsilon_i}}{Z} \] \hspace{1cm} (viii)
Since, partition function
\[Z = \sum_i g_i e^{-\beta \varepsilon_i} = \sum_i g_i e^{-\varepsilon_i / kT} \]

For isothermal-isochoric transformation,
\[
\left(\frac{\partial Z}{\partial T} \right)_V = \frac{1}{kT^2} \sum_i g_i \varepsilon_i e^{-\varepsilon_i / kT}
\]

\[
kT^2 \left(\frac{\partial Z}{\partial T} \right)_V = \sum_i g_i \varepsilon_i e^{-\varepsilon_i / kT} = Z \bar{E} \Rightarrow \quad \bar{E} = \frac{kT^2}{Z} \left(\frac{\partial Z}{\partial T} \right)_V
\]

Total energy,
\[
E = N \bar{E} \Rightarrow \quad E = \frac{NkT^2}{Z} \left(\frac{\partial Z}{\partial T} \right)_V = NkT^2 \left[\frac{\partial}{\partial T} \left(\log Z \right) \right]_V
\] (ix)
4. with Enthalpy (H):

Enthalpy is given by,

\[H = E + PV = E + RT \] \hspace{1cm} \text{(for an ideal gas, PV=RT)}

\[H = NkT^2 \left[\frac{\partial}{\partial T} \left(\log Z \right) \right]_V + RT \] \hspace{1cm} \text{.........(x)}

5. with Gibb’s Potential (G):

\[G = H - TS = NkT^2 \left[\frac{\partial}{\partial T} \left(\log Z \right) \right]_V + RT - TS \]

Putting the value of S from eqn. (iv) in above, we get
\[
G = NkT^2 \left[\frac{\partial}{\partial T} (\log Z) \right]_v + RT - T \left(Nk \ln Z + \frac{E}{T} \right)
\]
\[
G = NkT^2 \left[\frac{\partial}{\partial T} (\log Z) \right]_v + RT - NkT \ln Z - E
\]

putting the value of \(E \) from eq. (ix), we get

\[
G = NkT^2 \left[\frac{\partial}{\partial T} (\log Z) \right]_v + RT - NkT \ln Z - NkT^2 \left[\frac{\partial}{\partial T} (\log Z) \right]_v
\]

\[
G = RT - NkT \ln Z \quad \ldots \ldots (xi)
\]
6. with Pressure (P) of the gas:

\[P = -\left(\frac{\partial F}{\partial V} \right)_v = NkT \left[\frac{\partial}{\partial V} (\log Z) \right]_v \](xii)

7. with Specific heat at constant volume, (C_V):

\[C_v = \left(\frac{\partial E}{\partial T} \right)_v = \frac{\partial}{\partial T} \left[NkT^2 \left[\frac{\partial}{\partial T} (\log Z) \right]_v \right] \]

\[C_v = Nk \left[2T \frac{\partial}{\partial T} (\log Z) + T^2 \frac{\partial^2}{\partial T^2} (\log Z) \right]_v \](xiii)
References: Further Readings

1. *Statistical Mechanics* by R.K. Pathria

2. *Statistical Mechanics* by K. Huang

4. *Statistical Mechanics* by Satya Prakash
Thank You

For any questions/doubts/suggestions and submission of assignment
write at E-mail: neelabh@mgcub.ac.in