Lecture-9
Chemical Vapor Deposition

Two-Dimensional Nanostructures Cont…
(Ref: Guozhong Cao; Nanostructures & Nanomaterial: Synthesis, Properties & Applications)
Chemical Vapor Deposition (CVD)

- Substrate Exposed to Volatile Precursors
- Precursors react/decompose on substrate
- Desired film/powder deposited on substrate
- Extensively studied and well documented
- Close association with solid-state micro-electronics
Typical Chemical Reactions

• Homogeneous & Heterogeneous reactions are intricately mixed.

• Gas phase homogeneous reaction prevails:
 (i) Increasing Temperature
 (ii) Partial Pressure of Reactants
Gas phase reactions predominates with:

(i) Extremely high concentration of Reactants

It leads to Homogeneous Nucleation

For good quality films deposition:

- Homogeneous nucleation should be avoided.
Chemical reactions can be grouped into:

(A) Pyrolysis or thermal decomposition

\[\text{SiH}_4(g) \rightarrow \text{Si}(s) + 2\text{H}_2(g) \text{ at } 650^\circ\text{C} \]

\[\text{Ni(CO)}_4(g) \rightarrow \text{Ni}(s) + 4\text{CO}(g) \text{ at } 180^\circ\text{C} \]

(B) Reduction

\[\text{SiCl}_4(g) + 2\text{H}_2(g) \rightarrow \text{Si}(s) + 4\text{HCl}(g) \text{ at } 1200^\circ\text{C} \]

\[\text{WF}_6(g) + 3\text{H}_2(g) \rightarrow \text{W}(s) + 6\text{HF}(g) \text{ at } 300^\circ\text{C} \]
(C) Oxidation

\[\text{SiH}_4(g) + \text{O}_2(g) \rightarrow \text{SiO}_2(s) + 2\text{H}_2(g) \text{ at } 450^\circ\text{C} \]

\[4\text{PH}_3(g) + 5\text{O}_2(g) \rightarrow 2\text{P}_2\text{O}_5(s) + 6\text{H}_2(g) \text{ at } 450^\circ\text{C} \]

(D) Compound Formation

\[\text{SiCl}_4(g) + \text{CH}_4(g) \rightarrow \text{SiC}(s) + 4\text{HCl}(g) \text{ at } 1400^\circ\text{C} \]

\[\text{TiCl}_4(g) + \text{CH}_4(g) \rightarrow \text{TiC}(s) + 4\text{HCl}(g) \text{ at } 1000^\circ\text{C} \]
(E) Disproportionation

\[2\text{GeI}_2(g) \rightarrow \text{Ge}(s) + \text{GeI}_4(g) \text{ at } 300^\circ\text{C} \]

(F) Reversible Transfer

\[\text{As}_4(g) + \text{As}_2(g) + 6\text{GaCl}(g) + 3\text{H}_2(g) \]
\[\rightarrow 6\text{GaAs}(s) + 6\text{HCl}(g) \text{ at } 750^\circ\text{C} \]
• Demonstration of versatile chemical nature of CVD

• For deposition of given film

 - Different reactants/precursors can be used

 - Different chemical reactions may apply

• E.g.

 - Silica films may be synthesized by different ways:
Different ways to achieve silica-film:

a) $\text{SiH}_4(g) + \text{O}_2(g) \rightarrow \text{SiO}_2(s) + 2\text{H}_2(g)$

b) $\text{SiH}_4(g) + 2\text{N}_2\text{O}(g) \rightarrow \text{SiO}_2(s) + 2\text{H}_2(g) + 2\text{N}_2(g)$

c) $\text{SiH}_2\text{Cl}_2(g) + 2\text{N}_2\text{O}(g) \rightarrow \text{SiO}_2(s) + 2\text{HCl}(g) + 2\text{N}_2(g)$

d) $\text{Si}_2\text{Cl}_6(g) + 2\text{N}_2\text{O}(g) \rightarrow \text{SiO}_2(s) + 3\text{Cl}_2(g) + 2\text{N}_2(g)$

e) $\text{Si}(\text{OC}_2\text{H}_5)_4(g) \rightarrow \text{SiO}_2(s) + 4\text{C}_2\text{H}_4(g) + 2\text{H}_2\text{O}(g)$
• From same precursors and reactants

 - Different films can be deposited

 - By varying

 (i) Ratio of reactants &

 (ii) Deposition conditions
For example:

- Mixture of Si_2Cl_6 & N_2O may deposit
 - Silica films, and
 - Silicon Nitride films

Deposition rates of silica and silicon nitride as functions of the ratio of reactants and deposition conditions.

Reaction kinetics

- Although CVD is nonequilibrium process
 - Controlled by
 (i) Chemical kinetics, &
 (ii) Transport phenomena
- Equilibrium analysis is still useful
 - In understanding the CVD process
• Chemical reaction & phase equilibrium determine:
 - Feasibility of particular process, and
 - Final state attainable

• In a given system
 - Multistep complex reactions are involved
• Fundamental reaction pathways & kinetics
 - Investigated for few industrial important systems

• Complexity of reaction pathways & Kinetics arises:
 - In seemingly simple system, &
 - Deposition process

• Let’s take an example of:
 - Reduction of chlorosilane by hydrogen
• In Si-Cl-H system, at least 8 gaseous species exist:

- SiCl_4, SiCl_3H, SiCl_2H_2, SiClH_3,

- SiH_4, SiCl_2, HCl and H_2

• These 8 species are in equilibrium under:

- Deposition conditions governed by

 (i) Six equations of chemical equilibrium
Composition of gas phase as a function of reactor temperature for a molar ratio of Cl/H=0.01 and a total pressure of 1 atm, calculated using the available thermodynamic data.

Transport Phenomena

• Transport phenomena plays critical role in CVD

• Governs access of film precursors to substrate

• Influences reactions taking place before deposition
 - Degree of desirable &
 - Unwanted gas phase reactions
• Characteristics of CVD chambers have:
 - Complex reactor geometries, &
 - Large thermal gradient characteristics

• Leads to variety of flow structures & affect:
 - Film Thickness
 - Compositional Uniformity, &
 - Impurity Levels
• For most CVD systems

- Characteristic Pressure \(\geq 0.01 \text{ atm} \)

- Mean Free Paths >> Characteristic System Dimension

- Lower gas velocities ~ tens of cm/s

- Reynolds number < 100

- Flows are laminar
• During deposition of CVD Film:
 - Stagnant boundary layer of thickness (δ)
 - Adjacent to growth surface is developed

• In boundary layer,
 - Concentration of growth species decreases
 - From bulk concentration, P_i
 - To surface concentration, P_{io} (above growing film)
• Growth species diffuses through boundary
 - Prior to depositing onto growth surface

• In CVD, gas composition is reasonably dilute

• Diffusion flux through boundary layer is:

\[J_i = \frac{D(P_i - P_{i0})RT}{\delta} \]

(For gas/ growth species)
• ‘D’ is diffusivity in expression & depends on
 - Pressure and Temperature

• ‘D’ can be expressed as:

$$D = D_0 \left(\frac{P_0}{P} \right) \left(\frac{T}{T_0} \right)^n$$
• n is experimentally found to be ~ 1.8

• D_0 is value of D measured at
 - Standard temperature T_0 (273 K), and
 - Pressure P_0 (1 atm)

• D_0 depends on gas composition
• For deposition of large area films (above growth surface)

 - Depletion of growth species or reactants

 - Results in non-uniform film deposition

• To overcome non-uniformity in deposited films

 - Various reactor designs are developed

 - It improves gas-mass transport (through boundary layer)

E.g. - Low pressure, New Design, Substrate Susceptor
• Several CVD methods & reactors are developed
 - Depending on types of precursors used
 - Deposition conditions applied, and
 - Forms of energy introduced to system

• To activate desired chemical reactions
 - For deposition of solid films on substrates
For example, when precursors used are:

- Metal-organic compounds

- Process is referred as MOCVD (Metalorganic)

When plasma is used to promote chemical reaction

- It is plasma enhanced CVD or PECVD
• There are many other modified CVD methods

Such as,

- LPCVD (low pressure CVD)
- Laser enhanced or assisted CVD, and
- Aerosol-assisted CVD or AACVD
• LPCVD differs from conventional CVD

• Low gas pressure of -0.5 to 1 torr is used

• Low pressure is to enhance

 - Mass flux of gaseous reactants & products

 - Through boundary layer between

 # Laminar gas stream and substrates
- In PECVD processing,
 - Plasma is sustained within chambers
 - Simultaneous CVD reactions occur
- Typically, the plasma are excited either by
 - RF field (Frequencies: 100 kHz to 40 MHz)
 (Gas pressures: 50 mtorr to 5 torr)
 - Microwave (Frequency ~ 2.45 GHz)
• CVD reactors are generally divided into

- Hot-wall CVD, and

- Cold-wall CVD

Figure depicts a few common setups of CVD reactors.

(1) Horizontal reactor (2) Vertical reactor (3) Barrel reactor (4) Pan-cake reactor

A few common setups of CVD reactors.
• Hot-wall CVD reactors are usually tubular in form
 - Heating in HWCVD is accomplished by
 - Surrounding reactor with resistance element

• In typical cold-wall CVD reactors,
 - Substrates are directly heated
 - Inductively by graphite susceptors
 - Chamber walls are air or water-cooled
Prof. S. K. Tripathi

Department of Physics
School of Physical Sciences
Mahatma Gandhi Central University

Course Name: Nano Materials and Applications
Course Code: PHYS3024