Lecture-12
Characterization of Nanomaterials

(Structural Characterization, XRD)

(Ref: Guozhong Cao; Nanostructures & Nanomaterial: Synthesis, Properties & Applications)
Characterization and Properties of Nanomaterials

- Nanomaterials & Nanostructures are characterized by:

 - X-ray diffraction (XRD)

 - Various Electron Microscopy (EM)

 (i) Scanning Electron Microscopy (SEM)

 (ii) Transmission Electron Microscopy (TEM)

 (iii) Scanning Probe Microscopy (SPM)
• Chemical Characterization Techniques
 - Optical Spectroscopy
 - Electron Spectroscopy
 - Ionic Spectrometry

• Relationships between physical properties and Dimensions of nanomaterials are briefly discussed.
Structural Characterization

• Characterization of nanomaterials/nanostructures
 - Surface Analysis Techniques, &
 - Conventional Characterization Methods

• Similar to methods developed for bulk materials.
Example:

For nanoparticles, nanowires and thin films:

• XRD has been widely used for

 - Determination of Crystallinity

 - Crystal Structures, and

 - Lattice Constants
• SEM & TEM together with Electron Diffraction
 - Used in characterization of Nanoparticles.
• Optical spectroscopy is used to determine
 - Size of Semiconductor Quantum Dots.
• SPM is relatively new characterization technique
 - Found wide applications in Nanotechnology.
• Two major members of SPM family are
 - Scanning Tunneling Microscopy (STM)
 - Atomic Force Microscopy (AFM)

• STM & AFM are surface image techniques & can produce
 - Topographic Images of surface
 - Atomic resolution in all three dimensions
 - Combining with appropriately designed attachments
• STM & AFM have broadened range of applications
 - Nanoindentation
 - Nanolithography
 - Patterned Self-Assembly.

• Almost all solid surfaces, can be studied with STM & AFM
 - Whether Hard or Soft
 - Electrically Conductive or non-Conductive

• Surfaces can be studied in Air or Vacuum or Liquid.
X-ray diffraction (XRD)

• XRD is very important techniques to address issues

 - Related to Crystal Structure of Solids
 - Lattice Constants and Geometry
 - Identification of Unknown Materials
 - Orientation of Single Crystals
 - Preferred Orientation of Polycrystals
 - Defects, Stresses, etc.
Bragg’s Law

• X-rays ($\lambda = 0.7\text{-}2 \text{ Å}$), incident on specimen, &
 - Diffracted by crystalline phases of specimen
 - In accordance to Bragg's law:

$$\lambda = 2d \sin \theta$$

‘d’ is spacing between atomic planes

‘λ’ is X-ray wavelength.
• Intensity of diffracted X-rays is measured as
 - Function of the diffraction angle 2θ, &
 - Specimen’s Orientation.
• Diffraction Pattern is used to identify
 - Specimen’s Crystalline Phases, &
 - To measure its structural properties.
• Diffraction peak positions are accurately measured with XRD
 - Best method to characterize
 (a) Homogeneous Strains
 (b) Inhomogeneous Strains.

• Homogeneous or Uniform Elastic Strain
 - Shifts the diffraction peak positions.

• From shift in peak positions, one can calculate
 - Change in d-spacing (Occurs due to change of lattice constants under strain)
• Inhomogeneous strains vary from
 - Crystallite to Crystallite

 or

 - Within a single crystallite

• This causes broadening of diffraction peaks &
 - Increases with sin \(\theta \).
• Peak broadening is also caused by
 - Finite size of crystallites

• Here the broadening is independent of $\sin \theta$

• When both crystallite size & inhomogeneous strain
 - Contribute to the peak width

• It can be separately determined by
 - Careful analysis of peak shapes
If there is no In-Homogeneous strain,

- Crystallite size, ‘D’, can be estimated from peak width

- Using Scherrer's formula:

\[D = \frac{K \lambda}{B \cos \theta_B} \]

Where; ‘\(\lambda \)’ is the X-ray wavelength

‘B’ is full width half maximum (FWHM) (Diffraction Peak)

‘\(\theta_B \)’ is the diffraction angle, and

‘K’ is the Scherrer’s constant (Order of unity for usual crystal)
- Nanoparticles often form twinned structures
- Therefore, Scherrer’s formula may produce results different from the true particle sizes.
- In addition, X-ray diffraction only provides collective information of the particle sizes, &
 - Usually requires a sizable amount of powder.
• It should be noted that estimation would work
 - Only for very small particles

• Technique is very useful in
 - Characterizing nanoparticles

• Similarly, film thickness can also be estimated for
 - Epitaxial & highly textured thin films with XRD
Powder X-ray diffraction of a series of InP nanocrystal sizes. The stick spectrum gives the bulk reflections with relative intensities.

• Disadvantages of XRD, (Compared to Electron Diffraction)
 - Low intensity of diffracted X-rays
 - Particularly for low-Z materials
• XRD is more sensitive to high-Z materials
• For low-Z materials
 - Neutron or Electron diffraction is more suitable
• Typical intensities for Electron Diffraction are

 - 10^8 times larger than XRD

 - Because of small diffraction intensities

• XRD generally requires large specimens

• Information acquired is an average over a large amount of material
Prof. S. K. Tripathi

Department of Physics
School of Physical Sciences
Mahatma Gandhi Central University

Course Name: Nano Materials and Applications
Course Code: PHYS3024