
Amortized Analysis Part-I (DAA, M.Tech + Ph.D.)

By:

School of Computational Sciences, Information and Communication Technology,

Mahatma Gandhi Central University, Motihari

Bihar, India-845401
03-04-2020 1

Sunil Kumar Singh, PhD
Assistant Professor,

Department of Computer Science and Information Technology

Outline

03-04-2020 2

• Amortized Analysis

• An Example

• Types of Amortized Analysis

• Aggregate Analysis

• The Accounting Method

• The Potential Method

• Conclusion

• References

• In an amortized analysis, the time required to perform a sequence of data-
structure operations is averaged over all the operations performed.
Amortized analysis can be used to show that the average cost of an
operation is small, if one average over a sequence of operations, even
though a single operation withing the sequence might be expensive.

• Amortized analysis differs from average-case analysis in that probability is
not involved; an amortized analysis guarantees the average performance of
each operation in the worst case.

• Example: simple hash table insertion, the idea is to increase size of table
whenever it becomes full.

1. Allocate memory for a larger table of size, typically twice the old table.

2. Copy the contents of old table to new table.

3. Free the old table
03-04-2020 3

Amortized Analysis

03-04-2020 4

Amortized Analysis cont..
If the table has available space then simply insert the new item.

• Basically there are three types of Amortized Analysis:
1. Aggregate Analysis

2. The Accounting Method

3. The Potential Method

• Aggregate Analysis

In aggregate analysis, we show that for all 𝑛, a sequence of 𝑛
operations takes worst-case time 𝑇(𝑛) in total.

In the worst case, the average cost, or amortized cost, per
operation is therefore T(n)/n.

Note that this amortized cost applies to each operation, even
when there are several types of operations in the sequence.

03-04-2020 5

Amortized Analysis

• Ex-1 Stack Operations

A. PUSH(S,x)

B. POP(S)

C. MULTIPOP(S,k)

1. while not STACK-EMPTY(S) and k≠0
2. do POP(S)

3. k=k-1

When we analyze the running time of a sequence on 𝑛 PUSH, POP,
and MULTIPOP operations on an initially empty stack.

Using aggregate analysis, any sequence of n operations takes a
total of O(n) time. The average cost of an operation is O(n)/n=O(1)

Amortized cost of each operation is to be the Average cost.
03-04-2020 6

Aggregate Analysis cont..

• Ex-2 Incrementing a binary counter

As another example of aggregate analysis, consider the problem of
implementing a k-bit binary counter that counts upward from 0.
We use an array A[0..k-1] of bits, where length[A], as the counter.
A binary number x that is stored in the counter has its lowest-
order bin in A[0] and its highest-order bit in A[k-1], so that

𝑥 = ෍

𝑖=0

𝑘−1

𝐴 𝑖 . 2𝑖

Initially, x=0, and thus A[i]=0

for i=0,1,…..k-1. to add 1

(modulo 2𝑘) to the value in

the counter, we use the following procedure.03-04-2020 7

Aggregate Analysis cont..

❑The cost of each INCREMENT

operation is linear in the number of

bits flipped

❑A single execution of INCREMENT

takes time 𝑂(𝑘) in the worst case, in

which array A contains all 1’s

❑Thus a sequence of 𝑛 INCREMENT

operations on a initially zero counter

takes time 𝑂(𝑛𝑘) in the worst case.

03-04-2020 8

Aggregate Analysis cont..

• We can tighten our analysis to yield a worst-case cost of 𝑂(𝑛) for a
sequence of 𝑛 INCREMENT’s by observing that not all bits flip each time
INCREMENT is called. As figure shows A[0] does flip each time
INCREMENT is called.

• The next-highest-order bit, A[1], flips only every other time: a sequence
of 𝑛 INCREMENT operations on an initially zero counter causes A[1] to

flip
𝑛

2
times.

• Similarly, bit A[2] flips only every fourth time, or
𝑛

4
times in a sequence

of 𝑛 INCREMENTS’s. In general, for 𝑖 = 0,1,2 … .
log 𝑛

2
, bit A[i] flips

𝑛

2𝑖
times in a sequence of 𝑛 INCREMENT operations on an initially zero

counter.

03-04-2020 9

Aggregate Analysis cont..

• For 𝑖 > log 𝑛 , bit 𝐴[𝑖] never flips at all. The total number of flips in
the sequence is thus

෍

𝑖=0

log 𝑛
𝑛

2𝑖
< 𝑛෍

𝑖=0

∞
1

2𝑖
= 2𝑛

• The worst-case time for a sequence of 𝑛 INCREMENT operations on
an initially zero counter is therefore 𝑂(𝑛). The average cost of each
operation, and therefore the amortized cost per operation, is
𝑂(𝑛)/𝑛 = 𝑂(1).

03-04-2020 10

Aggregate Analysis cont..

• In the accounting method of amortized analysis, we assign differing
charges to different operations, with some operations charged more
or less than they actually cost.

• Amount charged on an operations is called its amortized cost.

• When an operation’s amortized cost exceeds its actual cost, the
difference is assigned to specific objects in the data structure as
credit.

• Credit can be used later on to help pay for operations whose
amortized cost is less than their actual cost. Thus, one can view
the amortized cost of an operations as being split between its
actual cost and credit that is either deposited or used up.

This method is very different from aggregate analysis, in which all
operations have the same amortized cost.

03-04-2020 11

Accounting Method

• One must choose the amortized costs of operations carefully. If we
want analysis with amortized costs to show that in the worst case
the average cost per operation is small, the total amortized cost of a
sequence of operations must be an upper bound on the total actual
cost of the sequence.

• Moreover, as in aggregate analysis, this relationship must hold for
all sequences of operations. If we denote the actual cost of the ith
operation by 𝑐𝑖 and the amortized cost of the ith operation, by ෝ𝑐𝑖
we require.

෍

𝑖=1

𝑛

ෝ𝑐𝑖 ≥෍

𝑖=1

𝑛

𝑐𝑖

For all sequences of n operations. The total credit stored in the data structure is the
difference between the total amortized cost and the actual cost.

• 03-04-2020
12

Accounting Method

෍

𝑖=1

𝑛

ෝ𝑐𝑖 −෍

𝑖=1

𝑛

𝑐𝑖

• By inequality the total credit associated with the data structure
must be non-negative at all times. If the total credit were ever
allowed to become negative, then the amortized costs incurred at
that time would be below the total actual costs incurred; for the
sequence of operations up to that time, the total amortized cost
would not be an upper bound on the total actual cost.

• Thus we must take care that the total credit in the data structure
never becomes negative.

03-04-2020
13

Accounting Method cont..

Example: Incrementing a binary counter

• As an illustration of the accounting method, we analyze the
INCREMENT operation on a binary counter that starts at zero. As
we observed earlier, the running time of this operation is
proportional to the number of bits flipped, which we shall use as
our cost for this example.

• For the amortized analysis, let us charge an amortized cost of 2
dollars to set a bit to 1.

• When a bit is set, we use 1 dollar to pay to flip the bit back to 0.

• The amortized cost of INCREMENT can now be determined. The
cost of resetting the bits within the while loop is paid by the dollars
on the bits that are reset.

03-04-2020
14

Accounting Method cont..

Example: Incrementing a binary counter

• The number of 1’s in the counter is never negative, and thus the
amount of credit is always non-negative. Thus, for n INCREMENT
operations, the total amortized cost is O(n), which bounds the total
actual cost.

03-04-2020
15

Accounting Method cont..

1. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, 2009.

2. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
"Introduction to algorithms second edition." The Knuth-Morris-Pratt Algorithm,
year (2001).

3. Seaver, Nick. "Knowing algorithms." (2014): 1441587647177.

03-04-2020
16

References

Thank You

03-04-2020 17

