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• In this lecture, we will discuss the concept of

electron gas in metals and derive the relations for

zero point energy, Fermi energy, Fermi pressure

and other thermodynamic functions of a

completely degenerate and strongly degenerate

Fermi-Dirac system.

• We will also see the applications of F-D statistics

in explaining the behavior of electronic specific

heat capacity and White Dwarf Star.
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Fermi energy for electron gas in metals

o Metals are very good conductors and the high conductivity
of metals is due to the presence of free electrons. These
free electrons move freely within the metal and
continuously collide among themselves and also with the
fixed ion core. Such behavior of free electrons is similar to
that of molecules of a gas. Thus, these free electrons in
metals behave like an free electron gas.

o Since, electrons have half-integral spin angular
momentum in units of h/2π, they are Fermions and obey
Fermi-Dirac statistics. Such a system of fermions confined
in a volume is known as Fermi gas (obeying Pauli’s
exclusion principle).
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Difference between Free electron gas and 

Ordinary gas

Free Electron gas

• Consists of electrically

charged particles

• Number of electrons per

unit volume is greater (1029

electrons/m3)

• Obeys Pauli’s exclusion

principle

• Free electrons are

indistinguishable

• Obeys Fermi-Dirac

statistics

Ordinary gas

• Molecules of an ordinary

gas are electrically neutral

• Number of molecules per

unit volume is lesser (1025

molecules/m3)

• Do not obey Pauli’s

exclusion principle

• Molecules are considered

distinguishable

• Obeys Maxwell-

Boltzmann statistics
4



• Consider an electron gas having ‘n’ free electrons in
a conductor whose volume is V. The energy
distributed among all the n electrons according to
the Fermi-Dirac distribution law is given by –

• If n is very large then spacing between two
successive energy levels become very small making
almost continuous. Thus, if the electron energy
ranges between ε to (ε+dε), number of degenerate
states gi and total number of electrons ni in these
states should be substituted by g(ε)dε and n(ε)dε,
respectively.

5

1
/)(




 kT

i
i

Fie

g
n





We know that, 

Since, electrons have only two allowed values of spin

quantum number (ms = ±1/2), total number of allowed

states in terms of energy is given by -
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This relation gives the Fermi-Dirac law of distribution of

energy among electrons.

Fermi Energy

Now, it is obvious from the figure that at T = 0 K, all the

single particle states up to εF are filled up.

Therefore,
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So, the number of electrons is equal to the total number of energy states

occupied by the electrons from zero to εF since each energy state can

have only one electron.

Thus, 

giving

The above expression of Fermi energy of electrons in the metal shows that

Fermi energy is independent of size and volume of the conductor and

solely depends on the electron concentration (n=N/V).
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Total energy at T = 0K 
(Completely degenerate F-D systems)

Total energy of electrons at absolute zero is given by –

This result shows that unlike a classical particle, a fermion
has appreciable energy even at absolute zero which is due
to quantum effect arisen out of the Pauli principle. This
clearly brings out the inadequacy of classical statistics in
describing the behavior of a completely degenerate F-D
gas. 9
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Since, 

so, this implies that the heat capacity of a fermion

system drops to zero at absolute zero. Similarly,

entropy of a F-D system also vanishes at absolute

zero.

Now, the ground state pressure exerted by a fermion

system is given by -
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Strongly degenerate F-D systems 
(T<<TF)

From FD distribution function, we find that the mean

occupation number n(ε) drops to ½ at ε=εF. As the

temperature is raised above absolute zero, electrons are

excited from single particle states with ε < μ to states with

ε > μ which appears in the form of a tail in n(ε) vs ε plot.

Moreover, μ depends on temperature.

Now, total number of particles at a finite temperature in

terms of is given by -
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To evaluate the integral, use Sommerfeld’s lemma: 

We, get

From eqn. (i), we have 
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So,

Taking into consideration the first two terms and neglecting 
higher order terms, we get

(put μ=εF)

Substituting the value of μ from (vi) into (v), we find
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Now, to find an expression for the variation of electronic

heat capacity with temperature, we will first calculate the

internal energy of electrons which is given by –

again, using Sommerfeld’s lemma as previous to evaluate

the integral and we get,

where we put, μ=εF in the second term of R.H.S of above

expression 15
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From eqn. (vii) and (ix), we obtain

Using binomial expansion up to the order of (T/TF)2 , we

get
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We can express the total internal energy of a

strongly degenerate fermion system (T << TF) in

terms of the total zero point energy (of a

completely degenerate system) as-

• The above eqn. shows that the total internal

energy of a fermion system increases with

temperature.
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• For a given values of V, T and N, the energy of an ideal

fermion gas is greater than that of a classical gas for T < TF.

However, for T >> TF, the energy of a fermion gas

approaches the classical value ( ).
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Thermodynamic Functions of Degenerate F-D gas

• Thermal capacity (CV):

Again, if we use eqn. (xi) for the terms up to (T/TF)4 then

eqn. (xii) modifies to
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Thus

From experimental results, it has been found that at

ordinary temperatures, the contribution to the

specific heat of metals due to electrons would be

negligible as compared to the contribution due to

the atoms. However, electronic contribution

dominates at low temperatures.
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• At low temperature, the constant volume heat

capacity of a metal is made up of two parts –

electronic and lattice as

21
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• Entropy (S) :

This shows that as i.e. entropy of

a strongly degenerate F-D gas drops to zero at absolute

zero temperature. This is in consistent to Third law of

thermodynamics.

If we use eqn. (xiii), then
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• Helmholtz Free Energy (F) :

Since, F=U-TS

Putting the values of U and S from eqn. (xi) and eqn. (xvi),

we get
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• Pressure exerted by a fermion system is given by-

Comparing above eqn. with eqn. (xi), we find
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White Dwarf Stars
• White dwarf stars are relatively old stars, almost in their end phase

of their lives. They are small in diameter and very faint but

extremely dense. Typical known white dwarfs are – Sirius B, 40

Eridani B, Van Maalu etc. A plot of luminosity of star versus

temperature is shown in figure which is known as Hertz-Russel

diagram (H-R diagram).

25Fig.: location of known white dwarf stars on H-R diagram



• White dwarf are stars which are much fainter, possess

small diameter and are very dense compared to other

stars of the same mass. Some data are –

Content: mostly Helium

Density: 1010 kg/m3 (10 × density of the Sun)

Mass: mass of helium (~ 1030 kg) under extreme pressure

Temperature: 107 K (Sun’s temperature)

• Thus, white dwarf star is a mass of Helium at an extremely

high temperature and under external compression. At this

temperature, helium atoms are expected to be completely

ionised and the star may be regarded as a gas composed of

helium nuclei and electrons.
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• The constituents of the star may therefore taken as N electrons

(each of mass, me) and N/2 helium nuclei (each of mass =

4mp). So, mass of the star is given by –

M = Nme+4mp×N/2 = N (me+ 2mp) ≈ 2Nmp......(i)

So, number density of electrons in a typical white dwarf star is –

Considering electron density (of Sirius B) is ~ 1.7×1036

electrons/m3 giving rise to Fermi energy of εF~0.33MeV and

Fermi temperature, TF≈109 K.
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• Since, as we know that rest mass of energy of an

electron is 0.5 MeV. Thus, the dynamics of electrons

in a typical white dwarf star is relativistic can be

considered as a highly degenerate electron gas which

is uniformly distributed in the star.

• For a relativistic particle, the energy-momentum

relation is given by –

• Therefore, the ground state energy of a F-D gas is -
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where pF is the Fermi momentum, defined by –

Thus,

substituting, in above, we get

where
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The case xF << 1 corresponds to the non-relativistic case,

whereas xF >> 1 corresponds to the relativistic case.

Now,

where is mass of white

dwarf star in terms of proton mass and radius of a white

dwarf star in terms of the Compton wavelength of the

electron.
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Pressure exerted by the Fermi gas is –

This enormous zero-point pressure exerted by the electron gas in a

white dwarf star is counterbalanced by gravitational attraction

between helium gas that binds the star.

Utilizing gravitational potential energy concept (for deriving mass-

radius relation), it has been found that no white dwarf star can

have a mass larger than

M0=1.44Θ

where Θ denotes the mass of Sun (≈ 2×1030 kg).

This mass is known as the ‘Chandrasekhar limit’. 
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Assignment

1. Apply F-D statistics to thermionic emission in

metals and hence deduce Richardson-Dushmann

equation.

2. Apply F-D statistics to photoelectric emission

phenomenon and explain the results.
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For any questions/doubts/suggestions and submission of 

assignment 

write at E-mail: neelabh@mgcub.ac.in

mailto:neelabh@mgcub.ac.in

