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 In this lecture, we will discuss the concept of
electron gas in metals and derive the relations for
Zero point energy, Fermi energy, Fermi pressure
and other thermodynamic functions of a
completely degenerate and strongly degenerate
Fermi-Dirac system.

* \We will also see the applications of F-D statistics
In explaining the behavior of electronic specific
heat capacity and White Dwarf Star.



Fermi energy for electron gas in metals

o Metals are very good conductors and the high conductivity
of metals Is due to the presence of free electrons. These
free electrons move freely within the metal and
continuously collide among themselves and also with the
fixed 1on core. Such behavior of free electrons is similar to
that of molecules of a gas. Thus, these free electrons in
metals behave like an free electron gas.

o Since, electrons have half-integral spin angular
momentum In units of h/2x, they are Fermions and obey
Fermi-Dirac statistics. Such a system of fermions confined
In a volume iIs known as Fermi gas (obeying Pauli’s
exclusion principle).



Difference between Free electron gas and
Ordinary gas

Free Electron gas

Consists of electrically
charged particles

Number of electrons per
unit volume is greater (102°
electrons/m3)

Obeys Pauli’s exclusion
principle

Free electrons are
Indistinguishable

Obeys Fermi-Dirac
statistics

Ordinary gas

Molecules of an ordinary
gas are electrically neutral

Number of molecules per
unit volume is lesser (102
molecules/m?)

Do not obey Pauli’s
exclusion principle

Molecules are considered
distinguishable

Obeys Maxwell-
Boltzmann statistics




» Consider an electron gas having ‘n’ free electrons in
a conductor whose volume 1iIs V. The energy
distributed among all the n electrons according to
the Fermi-Dirac distribution law Is given by —

n = Ji
| e(ei—g,:)/kT +1

 If n Is very large then spacing between two
successive energy levels become very small making
almost continuous. Thus, If the electron energy
ranges between ¢ to (e+dg), number of degenerate
states g; and total number of electrons n; in these
states should be substituted by g(e)de and n(e)de,
respectively.
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We know that,

A\Np°
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Since, electrons have only two allowed values of spin
quantum number (m, = +1/2), total number of allowed
states In terms of energy Is given by -
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This relation gives the Fermi-Dirac law of distribution of
energy among electrons.

Fermi Energy

Now, It I1s obvious from the figure that at T = 0 K, all the
single particle states up to - are filled up.

Therefore,
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So, the number of electrons is equal to the total number of energy states
occupied by the electrons from zero to - since each energy state can
have only one electron.

Thus,
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The above expression of Fermi energy of electrons in the metal shows that
Fermi energy is independent of size and volume of the conductor and
solely depends on the electron concentration (n=N/V).



Total energy at T = OK

(Completely degenerate F-D systems)

Total energy of electrons at absolute zero Is given by —
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This result shows that unlike a classical particle, a fermion
has appreciable energy even at absolute zero which is due
to quantum effect arisen out of the Pauli principle. This
clearly brings out the inadequacy of classical statistics in
describing the behavior of a completely degenerate F-D
gas.
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so, this implies that the heat capacity of a fermion
system drops to zero at absolute zero. Similarly,

entropy of a F-D system also vanishes at absolute
Zero.

Now, the ground state pressure exerted by a fermion
system Is given by -
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Strongly degenerate F-D systems
(T<<T;)

From FD distribution function, we find that the mean
occupation number n(e) drops to %2 at e=g.. As the
temperature is raised above absolute zero, electrons are
excited from single particle states with € < p to states with
¢ > n which appears in the form of a tail in n(g) vs ¢ plot.
Moreover, u depends on temperature.

Now, total number of particles at a finite temperature in
terms of x :%is given by -

8J/22vm¥2 T xM2dx
h’ e’ 41

0 11

N




To evaluate the integral, use Sommerfeld’s lemma:

T (X — X)) X° dx= % {1+ i Ch } .......... (ii)
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Taking into consideration the first two terms and neglecting

higher order terms, we get
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Substituting the value of u from (vi) into (v), we find
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again neglecting higher order terfns, we get
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At T=0K, this equation
reduces to p=gr. However,

as temperature

chemical potential lowers

somewhat.

Fig.. Temperature variation of
chemical potential of a Fermi gas
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Now, to find an expression for the variation of electronic
heat capacity with temperature, we will first calculate the
Internal energy of electrons which Is given by —

U =Tgn(g)dg=CV (kT )‘WT i S (viii)
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again, using Sommerfeld’s lemma as previous to evaluate
the integral and we get,
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where we put, u=¢¢ In the second term of R.H.S of above
expression



From eg". (vii) and (ix), we obtain
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We can express the total internal energy of a
strongly degenerate fermion system (T << Tg) In
terms of the total zero point energy (of a
completely degenerate system) as-
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 The above eq". shows that the total internal
energy of a fermion system iIncreases with
temperature.



* For a given values of V, T and N, the energy of an ideal
fermion gas Is greater than that of a classical gas for T < T_.
However, for T >> T, the energy of a fermion gas
approaches the classical value ( NKT).
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Fig.. Variation of internal energy of a strongly

degenerate Fermi gas as a function of temperature ,



Thermodynamic Functions of Degenerate F-D gas

» Thermal capacity (C,):

(

2 2
Q_(auj B NP L
oT ) 7|5 12 | T,

- \ < v

2 2 2
c, = ZNée T2 N A (KT e (xii)
2 T 2 \ T¢ 2 \ &¢

Again, if we use eqg". (xi) for the terms up to (T/Ty)* then
eg". (xi1) modifies to
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Thus C,—>0 as T—0

» From experimental results, it has been found that at
ordinary temperatures, the contribution to the
specific heat of metals due to electrons would be
negligible as compared to the contribution due to
the atoms. However, electronic contribution
dominates at low temperatures.
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« At low temperature, the constant volume heat
capacity of a metal Is made up of two parts —
electronic and lattice as
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Fig.: Variation of constant volume heat capacity of an

Ideal Fermi gas with temperature .



* Entropy (S) :
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» This showsthat as S—0 , T —>0 l.e. entropy of
a strongly degenerate F-D gas drops to zero at absolute
zero temperature. This Is In consistent to Third law of
thermodynamics.

If we use eq". (xiiI), then
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* Helmholtz Free Energy (F) :

Since, F=U-TS
Putting the values of U and S from eq". (xi) and eq". (xvi),

we get
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* Pressure exerted by a fermion system is given by-

p(al:j _2Nee 1+5”2L T ]+ ........ (xviii)
oV i 5 V 12 TF




White Dwarf Stars

« White dwarf stars are relatively old stars, almost in their end phase
of their lives. They are small in diameter and very faint but
extremely dense. Typical known white dwarfs are — Sirius B, 40
Eridani B, Van Maalu etc. A plot of luminosity of star versus
temperature is shown in figure which is known as Hertz-Russel
diagram (H-R diagram).
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« White dwarf are stars which are much fainter, possess
small diameter and are very dense compared to other
stars of the same mass. Some data are —

Content: mostly Helium
Density: 10%° kg/m?3 (10 x density of the Sun)
Mass: mass of helium (~ 10%° kg) under extreme pressure
Temperature: 107 K (Sun’s temperature)

* Thus, white dwarf star is a mass of Helium at an extremely
high temperature and under external compression. At this
temperature, helium atoms are expected to be completely
lonised and the star may be regarded as a gas composed of
helium nuclei and electrons.
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« The constituents of the star may therefore taken as N electrons
(each of mass, m,) and N/2 helium nuclei (each of mass =
4m,). So, mass of the star Is given by —

M = Nmg+4m *xN/2 = N (m + 2m) = 2Nm,,......(1)
So, number density of electrons in a typical white dwarf star is —

:E_I\/IIZmp_ Yo,

N — = ... I
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Considering electron density (of Sirius B) is ~ 1.7x103%
electrons/m? giving rise to Fermi energy of ¢-~0.33MeV and
Fermi temperature, Te=10° K.



* Since, as we know that rest mass of energy of an
electron i1s 0.5 MeV. Thus, the dynamics of electrons
In a typical white dwarf star is relativistic can be
considered as a highly degenerate electron gas which
IS uniformly distributed in the star.

 For a relativistic particle, the energy-momentum
relation Is given by — .
£=1/p

¢ +mc?

* Therefore, the ground state energy of a F-D gas Is -

Pe
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where p¢ Is the Fermi momentum, defined by —
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The case X << 1 corresponds to the non-relativistic case,
whereas X >> 1 corresponds to the relativistic case.

Now,
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where M = am and R= R( j is mass of white

dwarf star in‘terms of proton mass and radius of a white
dwarf star in terms of the Compton wavelength of the
electron.



Pressure exerted by the Fermi gas Is —
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This enormous zero-point pressure exerted by the electron gas in a
white dwarf star Is counterbalanced by gravitational attraction

between helium gas that binds the star.

Utilizing gravitational potential energy concept (for deriving mass-
radius relation), it has been found that no white dwarf star can

have a mass larger than
M,=1.440
where © denotes the mass of Sun (= 2x10%° kg).
This mass is known as the ‘Chandrasekhar limit’.
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Assignment

1. Apply F-D statistics to thermionic emission In

metals and hence deduce Richardson-Dushmann
equation.

2. Apply F-D statistics to photoelectric emission
phenomenon and explain the results.



Thank You

For any questions/doubts/suggestions and submission of
assignment
write at E-mail: neelabh@mgcub.ac.in
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