Basics of Genetic Algorithm



History of GAs

* Asearly as 1962, John Holland's work on
adaptive systems laid the foundation for later
developments.

* By the 19735, the publication of the book

Adaptation in Natural and Artificial Systems,
by Holland and his students and colleagues.



History of GAs

* carly to mid-1980s, genetic algorithms were
being applied to a broad range of subjects.

* In 1992 John Koza has used genetic algorithm
to evolve programs to perform certain tasks.
He called his method "genetic programming"

(GP).



What 1s GA

* A genetic algorithm (or GA) 1s a search technique
used 1in computing to find true or approximate
solutions to optimization and search problems.

* (GA)s are categorized as global search heuristics.

* (GA)s are a particular class of evolutionary
algorithms that use techniques inspired by
evolutionary biology such as inheritance,
mutation, selection, and crossover (also called
recombination).



What 1s GA

* The evolution usually starts from a population
of randomly generated individuals and
happens 1n generations.

* In each generation, the fitness of every
individual 1n the population 1s evaluated,
multiple individuals are selected from the
current population (based on their fitness), and
modified to form a new population.



What 1s GA

* The new population is used 1n the next iteration
of the algorithm.

* The algorithm terminates when either a
maximum number of generations has been
produced, or a satisfactory fitness level has

been reached for the population. \

No convergence rule
or guarantee!



Vocabulary

Individual - Any possible solution
Population - Group of all individuals

Fitness — Target function that we are optimizing (each
individual has a fitness)

Trait - Possible aspect (features) of an individual
Genome - Collection of all chromosomes (traits) for an
individual.



Basic Genetic Algorithm

 Start with a large “population” of randomly generated
“attempted solutions™ to a problem

* Repeatedly do the following:
— Evaluate each of the attempted solutions

— (probabilistically) keep a subset of the best
solutions

— Use these solutions to generate a new population

* Quit when you have a satisfactory solution (or you
run out of time)



Example:
the MAXONE problem

Suppose we want to maximize the number of
ones in a string of / binary digits

Is it a trivial problem?

It may seem so because we know the answer in
advance

However, we can think of it as maximizing the
number of correct answers, each encoded by 1,
to /I yes/no difficult questions’



Example (cont)

e Anindividual is encoded (naturally) as a string of /
binary digits

* The fitness f of a candidate solution to the MAXONE
problem is the number of ones in its genetic code

* We start with a population of n random strings.
Suppose that/=10and n=6



Example (initialization)

We toss a fair coin 60 times and get the
following initial population:
s, = 1111010101 f(s,) =
s, = 0111000101 f(
s; = 1110110101 f(s,
s, = 0100010011 f(
S; = 1110111101 f(
Sg = 0100110000 f(



Step 1: Selection

We randomly (using a biased coin) select a subset of
the individuals based on their fithess:
Individual i will have a S @)
orobability to be chosen Zf @)

Area is
Proportional
to fitness
value




Selected set

Suppose that, after performing selection, we get
the following population:

s, = 1111010101 (s,)
s,” = 1110110101 (s,)
)
)

s;" = 1110111101 (s,
s, = 0111000101 (s,
s5‘ = 0100010011 (s,)

(n
o

= 1110111101 (s5)



Step 2: crossover

* Next we mate strings for crossover. For each

couple we first decide (using some pre-defined
probability, for instance 0.6) whether to actually
perform the crossover or not

* If we decide to actually perform crossover, we
randomly extract the crossover points, for
iInstance 2 and 5



Crossover result

Before crossover:
s, = 1111010101 s, = 1110110101

After crossover:
s, =1110110101 s, = 1111010101



Step 3: mutations

The final step is to apply random mutations: for each bit that we are to copy to
the new population we allow a small probability of error (for instance 0.1)

Initial strings After mutating
s, =1110110101 s, =1110100101
s, =1111010101 s, =1111110100
s; =1110111101 s;  =1110101111
s, =0111000101 s,  =0111000101
ss =0100011101 ss " =0100011101

" =1110110001

(o))

 =1110110011 S

Y



And now, iterate ...

In one generation, the total population fitness
changed from 34 to 37, thus improved by ~9%

At this point, we go through the same process
all over again, until a stopping criterion is met



