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Why Vibrational Spectroscopy? 

• For the identification of characteristic vibrational
motion

• Structural information of the molecules

• Detection of functional groups

• Information about isotopes

• To study molecular interactions

Introduction



Vibrational Spectroscopy

Vibrational Spectroscopy is a method of characterizing

and identifying compounds that works by measuring the

vibrational spectra of compounds. Each compound has a

unique fingerprint or measurement of the vibrations,

allowing compounds to be identified.

The vibrational spectra gives information about the

composition, type of bonding, bond strength, isotopic

substitution, information about functional group,

complex species, etc.



Vibrational Spectra

Gaynor et al. J. Chem. Educ. 2015, 92, 6, 1081-1085
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Origin of Vibrational Spectra

• Non-rigid nature of bonds

• Bond get stretched while rotation

• The elastic nature of bond causes vibration of 
atoms of the molecule about the mean position.
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Classical Harmonic Oscillator

errr −=where,

k is spring constant or force constant

Consider simple case of a vibrating diatomic molecule, For
small displacements the stretching and compression of the
bond, represented by the spring, obeys Hooke’s law.
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Potential Energy of Harmonic Oscillator
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Quantum Mechanical Harmonic Oscillator
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Normalized Vibrational Wavefunction
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Normalized Vibrational Wavefunction
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Energy of Vibrational States



Simple harmonic oscillator does not predict bond
dissociation.

Simple harmonic oscillator fits well at low excitation but
fits poorly at high excitation.

Simple harmonic oscillator explains only fundamental
vibrations but not the overtones.

r

Limitations of Simple Harmonic Oscillator



Morse potential give the better approximation to potential
energy of vibrating diatomic molecules
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The Morse Potential

V(r) → 0

V(r) = – De



…..

Schrödinger wave equation for the diatomic molecule with
Morse potential is given by

Anharmonic Oscillator



Vibrational Energy States 



n

E
 (

cm
-1

)

Harmonic vs Anharmonic Oscillator
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Summary



Cartesian coordinates

For molecule having N atoms: 3N Cartesian coordinates

X

Z

Y

• (x, y, z) 

x

z

y

(x1, y1, z1) 

(x2, y2, z2) 

(x3, y3, z3) 

(x4, y4, z4) 

(x5, y5, z5) 

C    x1 y1 z1

H    x2 y2 z2

H    x3 y3 z3

H    x4 y4 z4

H    x5 y5 z5

Vibrations in Polyatomic Molecule

For molecule having N atoms: 3N Degree of Freedom



Translation

Rotation

Vibration

Distribution of 3N Degree of Freedom

For non-linear molecule :  3N – 6 

For linear molecule :  3N – 5 

The vibrational degree of freedom in molecule having N atom



A mode of vibration is called normal mode of vibration in
which all atoms of a molecule oscillate with same frequency
and in phase such that the center of mass must not change.

Normal Mode of Vibration

+ +–

H2O

CO2

Symmetric stretching Bending Anti-symmetric stretching

Symmetric stretching Anti-symmetric stretching

Bending



Books for Further Reading

1. Fundamentals of Molecular Spectroscopy by C. N. Banwell
(McGraw Hill)

2. Basic Atomic & Molecular Spectroscopy by J. M. Hollas
(Royal Society of Chemistry)
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