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v Heat capacity of solids
v Equilibrium constant and partition functions 
v Quantum statistics
v Fermi-Dirac and Bose-Einstein statistics



v The heat capacity of a solid: Heat capacity is defined as the increase in the internal energy (E) as the
temperature of that substance is raised by one unit. The standardized unit could be a unit of mass (e.g., gram or
kg, etc,) but the standardized unit for comparison between different substances is a mole.

v Classical Approach: For a solid we can also consider it being made of several harmonic oscillators The
average energy of a harmonic oscillator in one dimension is kT, where k is Boltzmann's constant. In all the 3
dimensions the average energy will be 3 times of kT e.g., 3kT. If there are N atoms in the lattice then the internal
energy is E(mole) = N(3kT).

For one mole E = 3RT
Cp = (∂E(mole)/∂T)
and thus from the above
Cp = (∂3RT(mole)/∂T)
Cp = 3R

The value for Cp of 3R is about 6 calories per degree Kelvin. This is also known as the Dulong and Petit value.
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C = 𝛿E/ 𝛿T



v Equilibrium Constants in Terms of Partition Functions:

The equilibrium constant K of a reaction is related to the standard Gibbs energy of reaction by ∆ G0 = −RT ln K 
and molar partition function, qm = q/n

To calculate the equilibrium constant, we need to combine these two equations.

The equilibrium constant for the reaction a A + b B → c C + d D is given by the following equation;

Where ∆E0 is the difference in molar energies of the ground states of the products and reactants 
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Note: Students are requested to also see the Atkins’ Physical chemistry book
Chapter 17 for a more in-depth analysis
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v What is statistics: Statistics are usually defined as the collection of numerical data, it is a field of mathematics 

that deals with the collection, tabulation and interpretation of the numerical data. 
There are two main types of statistics in thermodynamics:

(1) Classical statistics (Maxwell-Boltzmann’s statistics or MB statistics): Here each particle of the system has
an individuality and thus can be distinguishable. If we have only 2 cells and 2 particles, then each particle has
equal probability of occupying either of the cell. A total of 4 possible arrangements thus exist in this system. Ideal
gas molecules follow MB statistics)

(2) Quantum statistics: (1) Fermi-Dirac (FD statistics): In quantum statistics the particles are considered to be
indistinguishable, so we have to consider only cells where particles can be placed. For a 2 particles and 2 cells
system, we can have only one combination in Fermi-Dirac statistics because the filling of cells will be as per the
Pauli’s exclusion principle and therefore each cell can only contain one particle. Particles that follows FD statistics
are known as Fermions (e.g., electron)

[According to the Pauli exclusion principle: two or more identical fermions (particles with half-integer spin) cannot
occupy the same quantum state within a quantum system simultaneously]

(1) Quantum statistics: (1) Bose-Einstein (BE statistics): The main feature of the quantum statistics is that the
particles of the system loose their individuality that is a postulate from quantum mechanics. Now since the
particles are indistinguishable, therefore we can only consider about the cell. Again, if we have 2 particles and 2
cells then we can have three possible arrangements as the particles are indistinguishable. Particles that follows
BE statistics are known as Bosons (e.g., photon)
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Bosons like to be in same
energy state, so many bosons
are possible to fit in one
place

Fermions do not like to be in
same energy state, so many
Fermions are not possible to
fit in one place, so probability
is low
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Let us consider the total probability sum for a system of particles that follows Fermi-Dirac statistics. 
Consider
ϵ1, ϵ2,…, ϵi,…. are the energies of the successive energy levels, 
g1, g2,…, gi,…. are the degeneracies of these levels, 
And N1, N2,…, Ni,…. are the number of particles in all of the degenerate quantum states of a given energy level. 
The probability of finding a particle in a quantum state depends on the number of particles in the system; we 
have ρ(Ni,ϵi) rather than ρ(ϵi). Consequently, we cannot generate the total probability sum by expanding an 
equation like 
1 = (P1+P2+⋯+Pi+…)N

Three assumptions to make

(1) At constant T: A finite subset of the population sets available to the system accounts for nearly all of the 
probability.
(2) At isolated system: Essentially the same finite subset of population sets accounts for nearly all of the 
probability.
(3) All of the microstates with a given energy have the identical probability. We let this probability be ρFDMS,N,E.

v Quantum statistics
v (1) Fermi-Dirac (or FD) statistics:
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The total probability sum will be of the form

It reflects the fact that there are WFD(Ni,ϵi) ways to put Ni particles in the gi quantum states of energy level ϵi.
Here the probabilities are different for successive particles, so the coefficient WFD is different from the polynomial 
coefficient, or thermodynamic probability. Instead, we must discover the number of ways to put Ni indistinguishable 
particles into the gi-fold degenerate quantum states of energy ϵi when a given quantum state can contain at most one 
particle.

These conditions can be satisfied only if gi ≥ Ni. If we put Ni of the particles into quantum states of energy ϵi, there are

gi ways to place the first particle, but only
gi−1 ways to place the second, and
gi−2 ways to place the third, and
gi−(Ni−1) ways to place the last one of the Ni particles.

This means that there are gi! / (gi−Ni)! ways to put Ni particles.
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1 = ∑WFD(Ni, ϵi) ρFDMS,N,E



Because the particles cannot be distinguished from one another, we must exclude assignments which differ only by
the way that the Ni particles are permuted. To do so, we must divide by Ni!. The number of ways to
put Ni indistinguishable particles into gi quantum states with no more than one particle in a quantum state is
gi! / (gi−Ni)!Ni!

WFD(Ni,gi)=[g1! / (g1−N1)!N1!] × [g2! / (g2−N2)!N2!] ×⋯× [gi! / (gi−Ni)!Ni!]×⋯=∏ [gi! / (gi−Ni)!Ni!]
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Now the total probability sum for a Fermi-Dirac system becomes

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A
_Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/25%3A_Bose-Einstein_and_Fermi-
Dirac_Statistics/25.01%3A_Quantum_Statistics

Note: Students are requested to also see the following freely available course online 

1=∑{Nj}∏i=1∞[gi! / (gi−Ni)!Ni!][ρFD(ϵi)]Ni

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%253A_Thermodynamics_and_Chemical_Equilibrium_(Ellgen)/25%253A_Bose-Einstein_and_Fermi-Dirac_Statistics/25.01%253A_Quantum_Statistics


Statistical Thermodynamics: Part-2

v Quantum statistics
v (1) Bose-Einstein statistics:

Particles that follow Bose-Einstein or (BE) statistics, we let the probability of a microstate of energy E in an N-particle 
system be ρBEMS,N,E. For an isolated system of BE particles, the total probability sum is given by the following 
equation:

1=∑WBE(Ni,gi)ρBEMS,N,E

We need to find WBE(Ni,gi), that is the number of ways to assign indistinguishable particles to the quantum states, if 
any number of particles can occupy the same quantum state.
First considering the number of ways that Ni particles can be assigned to the gi quantum states associated with the 
energy level ϵi. Here the fewest number of quantum states that can be used is one. Also, we can not use more than Ni 
quantum states while giving each particle a quantum state.



gi boxes around Ni points: Consider having a linear frame on which there is a row of locations. Each location
can hold one particle. The frame is closed at both ends. Between each successive pair of particle-holding
locations, there is a slot, into which a wall can be inserted. This frame is shown below.
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Figure: Assigning BE particles to degenerate 
energy levels

When we try inserting (gi-1) walls into these slots, the frame contains gi
boxes. We need to insert walls in such a way that Ni particles are
distributed in gi boxes and we can also have any number of particles in
any desired boxes.
We do this by making frame to have (Ni+gi-1) particles placement
locations. One such case is when all Ni particles are in one box (see
Figure below). Here we require Ni occupied and (gi-1) unoccupied
locations.

Figure: Maximum possible size frame
For Ni BE particles in gi locations
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Number of ways that we can place (gi-1) walls into the (Ni+gi-1) slots: Here the first wall can go into any 
available (Ni+gi-1) slots and second can go to any available (Ni+gi-2) slots. Last wall will go to (Ni+gi-(-1)-(gi-2) = 
(Ni+1) slots. Thus the total number of ways of inserting the (gi-1) walls is as follows;

Total includes all permutations of the walls and it does not matter if 1st, 2nd, or the final wall occupies a slot.
Based on this the expression is over counted by (gi-1) walls so finally the Ni particles can be assigned to the gi
quantum states in (Ni+gi-1)! / Ni! (gi-1)! ways.

And the total probability sum for a Bose-Einstein (BE) system is

(Ni+gi−1)(Ni+gi−2)…(Ni+1)=(Ni+gi−1)(Ni+gi−2)…(Ni+1)(Ni)…(2)(1) / Ni! = (Ni+gi−1)! / Ni!

WBE(Ni, gi) = [(N1+g1−1)! / (g1−1)! N1!] × [(N2+g2−1)! / (g2−1)!N2!]×⋯×[(Ni+gi−1)! / (gi−1)!Ni!] ×…
=∏[(Ni+gi−1)! / (gi−1)!Ni!]

1=∑{Nj}∏i=1∞[(Ni+gi−1)!/(gi−1)!Ni!][ρBE(ϵi)]Ni



Statistical Thermodynamics: Part-2

References

1) Atkins' physical chemistry

2) Statistical thermodynamics by C. L. Tien and J. H. Lienhard

3) https://chem.libretexts.org/ [especially for quantum statistics FD and BE statistics]

https://chem.libretexts.org/

