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Perturbation Theory

Exact solutions are available for very few problems in quantum world. For almost
all real problems are to be solved by approximation methods. Perturbation theory
1s one of them.

This theory 1s applied in cases where we want to measure the response of atoms
and molecules to external (electric or magnetic) field: Effect of small change in

potential on quantum system.

Example : interaction between two electrons in He atom



Perturbation mean small disturbance. When some
external factors affect the system and the exact
solution is not available, then the external factor
affecting the system, is considered as a small
perturbation to the system to find out the solution to
explain its behavior and energy.

This theory can be applied to both Time Independent
and Time Dependent system. Approach of
perturbation treatment towards degenerate and non
degenerate system 1s also different. We shall restrict
our application to time independent non degenerate
perturbation theory. This approach is known as
Rayleigh-Schrodinger Perturbation Theory.



* Time Independent Perturbation Theory

The Hamiltonian of a quantum mechanical system with small
perturbation may be represented as H whose exact solution 1s difficult
to find

Hiy = B, (1)

H© is the Hamiltonian for the unperturbed or simpler system, its exact
solution 1s known.
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¥ s are the exact solution for unperturbed system and non-degenerate



The difference between H and H® is very small
and may be considered as perturbation on HY
and 1t 1s very small, all quantities of the system
can be expanded in terms of Taylor Series stating

from unperturbed quantities. Hence:
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Here the parameter A—0
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flz) = flaa) + Fila)a - i]j—|—j“l‘ )z — z,)?

fur Ta j'”"” ﬂlc.
L) g gy o — o) 4 -
[ T
R [
= > T @ ey
g .
e - r
e =14 x4+ - b — - — .,
21 3! 41
sinx=ix— > ot — ..
3! 51 i
xt xT x”
cosx=1——+ — -+ ..
21 41 L
I 1 lr:I=1.—T_ I X ] Senr _1.|-':l
2 3 e
LTy |_'_1::|—_1—I al —I—+__ ﬁ'ﬂ|1 < ]




* Following Taylor expansion we may write

E_(A) around A—0 as
£,=E,0)+ n| 3 L1dE gyl TEal g, (6)
dd |, 2 dM ], 34 -.ﬁk:[]

comparing eq (5) with eq (6), one may write:

EY) = E,0), E{ =%,
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etc. Similar relation holds for Hamiltonian and wavefunction



In many physical situation, it 1s sufficient to consider upto 1st
order term, hence the series is terminated up to H=H® + H®

Now to calculate the perturbation correction, we substitute eq
(3), (4) and (5) 1n eq (1) and rearrange the terms according to
the powers of A
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The powers of A are linearly independent functions, so to satisfy the
above equation for all arbitrary values of A, only criteria I to equate
the coefficient of each power to be 0.
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Now onwards, we shall be using Bra-Ket notations to simplify the
equation, here wave function corrections by there state number will
be written as ¥, @ = | n ©> ¥ )= |n D>

The first order Correction to Energy

We shall start from eq (9)
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Multiplying eq (11) from left by <n © | , We obtain
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In order to go from eq (13) to (14) we have used the fact
that unperturbed wavefunction is normalised and the
Hermiticity of HO), as a result we can write it as
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Hence according to (15), we can write the first order of energy as

EN = (pl® ‘J,r';-:l:‘”:u:-} (17)

It is Simply the expectation value of 15t order Hamiltonian in
the unperturbed state

Solve the problem: Calculate the first order correction to the
energy of th nth state of a harmonic oscillator hoe centre of

potential had been diplacd from 0 to ditance a



First oder correction of wave function:

At first eq (9) is multiplied from left by <k© |, where k
1,
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Where we have made use of the orthogonally of the zeroth
order wave functions and also have assumed non-degeneracy
of zeroth order problem (i.e. E (9 -E 0 #0)



Now to derive the expression for | n () > we will employ the
1dea of 1dentity operator in the eigen functions of unperturbed

system (zeroth order eigen functions)

n®) = 1n®) = 3 [KO) KO |n) (26)
k

Before substituting (25) into the above equation we must resolve a conflict: k& must be
different from n in (25) but not necessarily so in (26). This restriction implies that
the first order correction to |n) will contain no contribution from |n'™). To impose this
restriction we require that that (n'”|n) = 1 (this leads to (n'”|n'7)} = 0 for j = 1. Prove
it! ) instead of (n|n) = 1. This choice of normalisation for |n) is called intermediate
normalisation and of course it does not affect any physical property calculated with |n)
since observables are independent of the normalisation of wavefunctions. So now we can
substitute (25) into (26) and get
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where the matrix element H }?L} 15 defined by the above eguation.



« Second Order Energy Correction

To derive an expression for the second order correction to the energy multiply (10) from
the left with (n'%| to obtain
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where we have used the fact that {n O[pMy = 0 (section 2.1.2). We now solve (28) for
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which upon substitution of [n'") by the expression (27) becomes
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Variational Theory

Variation theory 1s another common approximation method in
quantum mechanics.

Perturbation theory I useful when there 1s a small dimensionless
parameter (A) in the problem and the system 1s exactly solvable when
A—0. (He atom problem, quantum electrodynamics)

In case of variational theoy, above criteria are not required. Therefore
it 1s useful to study in studying strongly correlated systems. This
theory is the basis of Hatree-Fock theory, density function theory This

Theory 1s useful to study the ground state.



This theorem is based on Ritz Theorem, which states that, given a time independent

Hamiltonian, H, with a set of eigenvalues, E_ and eigenvectors, | v, > satisfying

H |y, ) = Enlyn)
then for any arbitrary ket vector [¢) in the Hilbert space, the expectation value of H in this ket must satisfy

W H 1)

where Fjy is the exact ground state energyv. Equality only holds if

%) = [to)

The proof of the theorem is relatively simple. We expand [¢) in the eigenstates of H:
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Therefore, the expectation value of H in the arbitrary ket vector is

(W H[Y) Y. En|Cyl?
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Since |C,|* > 0 and E,, > Eq, it follows that
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Tt is also clear that equality can only hold if Cy = 1 and ), = 0, n > 0, in which case,
|"ﬂru'i..-') = |"I!r-'f.3[])

The conclusion is that Ey is, therefore, a lower bound on the on (H), which means that we can approximate E; by a
minimization of (H) with respect to any parameters that [¢) might depend on.



Note that

| H| )

iy = L)

depends on all components of [¢0). Tf we write the expectation values as integrals (in one-dimension, for example),
then we see that

| da (2 Hy ()

(H) = T dz 9~ (2)9(@)

which shows that (H) depends on all values of the function ¢'(z), which is known as a trial wave function. We,
therefore, call {H) a functional of ¢(x). Loosely speaking, a functional is a function of a function. We, therefore,
denote the variational functional as

from which it follows that

E["ﬂ;‘:'.-‘] = E{]
E["E;‘T.-‘(]] = E{]

The functional character of E|ib] can be used to derive another important property of the functional, which is the
stationarity property around any eigenstate of H. In order to derive the stationarity condition, we consider making
a small variation of the trial ket according to
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and we evaluate the functional E[ + d]:
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Now, we work to first order in |§¢') or {§¢)|. Thus, we expand the functional:
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Now, comparing the left and right sides, we have
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The stationarity condition is now obtained by setting the two first derivatives of E[¢ to zero, which yields to
conditions:

which are equivalent, being simply adjoints of each other.
Thus, the stationary condition is

which can be satisfied only if 1)) is an eigenvector of H with eigenvalue Eft)]. This suggests that any eigenvector of
H can be found by searching the functional E[¢)] for extrema. Although possible, in principle, this is very difficult to
implement in practice unless the dimensionality of the system is very low. However, if anvone were able to come up
with an efficient algorithm for doing so, the variational theory guarantees that the process will vield the eigenvectors

of H.



Example-l: Harmonic Oscillator

We will use the harmonic oscillator Hamiltonian in order to illustrate the procedure of using the variational theory.

The Hamiltonian we wish to consider, therefore, is

B d?

H=—————
2m. dx?

Suppose that we do not know the exact ground state solution of this problem, but, using intuition and knowledge of
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the shape of the potential, we postulate the shape of the wavefunction:
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and postulate a form for the ground state wave function as
Pir) =e = (x:;a)

We view a as a variational parameter with respect to which we can minimize (H).
Thus, we compute

Clearly,

The quantity
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can be easily shown to be
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There, the ratio of these gives
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We then compute the best approximation to Fy by minimizing E{a) with respect to a:
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Then the energy is obtained from
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In this case, the exact ground state energy is obtained because we assumed the correct functional form for the trial
wave function. Thus, the ground state wavefunction is clearly given by
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Reference:

Google

Molecular Quantum Mechanics, Atkins and Friedman
Perturbation theory note by Chris-Kriston kylaris
http://hitoshi.berkeley.edu/221A/variational . pdf



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	 
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

