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Theoretical Distribution

In this topic, we will cover the following univariate probability
distributions:
i. Binomial Distribution
ii. Poisson Distribution
iii. Normal Distribution

The first two distributions are discrete probability distributions and the 
third is a continuous distribution. 

Note:

 Discrete random variable: Only takes finite or countable many number of
values. For example, marks obtained by students in a test, the number of
defective mangoes in a basket of mangoes, number of accidents taking
place on a busy road, etc.

 Continuous random variable: The random variable assume infinite and
uncountable set of values. In this case, we usually talk of the value in a
particular interval and not at a point. For example, the age, height or
weight of students in a class are all continuous random variable.
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Normal Distribution

 Normal probability distribution is one of the most important continuous theoretical
distributions in Statistics.

 The normal distribution was first discovered in 1733 by English mathematician De-Moivre who
obtained this continuous distribution as a limiting case of the binomial distribution and
applied it to problems arising in the game of chance.

Definition

 A random variable X is said to have a normal distribution with parameters µ (called "mean")
and σ (called "variance") if its density function is given by the probability law:

 Where π and e are the constants given by: π=22/7. =2.5066 and e=2.71828.
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Normal Distribution
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Standard Normal distribution

 If X is a random variable following normal distribution with mean µ and standard deviation σ,
then the random variable Z defined as follows:

is called the standard normal variable. We have:

 Therefore, the standard normal variate Z has mean 0 and standard deviation 1. Hence the
probability density function (p.d.f.) of standard normal variate Z is given by:

Taking x=z, µ=0 and σ=1
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Properties of Normal Distribution
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 The normal probability curve with mean µ and standard  deviation σ is given by the equation

 The standard normal probability curve is given by the equation:

 It has the following properties

1. The curve is bell shaped and symmetrical about the line x = µ

2. Mean, median and mode of the distribution coincide.

3. As x increases numerically, f(x) decreases rapidly, the maximum probability occurring at the

point x = µ, and given by

  xexf x ,
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Properties of Normal Distribution
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4. If β1=0 and β2=3

5. µ 2r+1= 0, (r = 0, 1,2, ... ), and µ 2r = 1.3.5 ... (2r - I ) σ2r, (r = 0, 1, 2, .....)

6. Since f(x) being the probability, can never be negative. no portion of the curve lies

below the x-axis.

7. Linear combination of independent normal variates is also a normal variate.

8. x-axis is an asymptote to the curve.

9. The points of inflexion of the curve are given by



Properties of Normal Distribution
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10. Area Property

11. The following  table gives the area under the normal probability curve for some important 

values of standard normal variate Z•



Properties of Normal Distribution
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12. If X and Y are independent standard normal variates, then it can be easily proved that U = X

+Y andV=X -Y are Independently distributed

13. Area Property (Normal Probability Integral). If X~N(µ , σ2 ), then the probability that random

value of X will lie between X = µ and X = x1 is given by



Properties of Normal Distribution
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14. The total area ·under normal probability curve is unity, i.e.,
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