Connected Spaces

DR. SHEO KUMAR SINGH

Assistant Professor,
Department of Mathematics
School of Physical Sciences,
Mahatma Gandhi Central University, Motihari, Bihar845401.

Email: sheokumarsingh@mgcub.ac.in

Let X be a topological space. Then $A, B \subseteq X$ are said to be separated if $\overline{A} \cap B = \emptyset = A \cap \overline{B}$. In such a case, the pair (A, B) is called a separation of X.

Definitions:

- A topological space *X* is said to be connected if it cannot be expressed as a union of disjoint non-empty open sets.
- ▶ A topological space *X* is said to be disconnected if it is not connected.

Theorem 1: X is disconnected $\Leftrightarrow X$ has a separation.

Proof: (Leave as an exercise to the reader).

Some important results

Theorem 2: For a topological space X the following conditions are equivalent:

- (i) The space X is connected.
- (ii) Only closed-and-open (i.e., clopen) subsets of X are \emptyset and X.
- (iii) If $X = A \cup B$ and A and B are separated sets, then one of them is empty.
- (iv) Every cont. map $f: X \to 2_D$ is constant, where 2_D is two-point discrete space.

Proof: (Outlines only)

- (i) \Rightarrow (ii): If X has a clopen subset G, then the pair (G, X G) turns out to be a separation of X, which is a contradiction.
- (ii) \Rightarrow (iii): Now, A and B are separated sets, so, $\bar{A} \cap B = \emptyset = A \cap \bar{B}$. Also, as $X = A \cup B$, so A and B turn out to be clopen sets in X. Hence, by (ii) either A or B is empty.

- (iii) \Rightarrow (iv): Suppose that $2 = \{a, b\}$. If $f: X \to 2_D$ is a non-constant cont. map, then $f^{-1}\{a\} \& f^{-1}\{b\}$ are non-empty separated sets and $X = f^{-1}\{a\} \cup f^{-1}\{b\}$, contradiction.
- (iv) \Rightarrow (i): If X is disconnected, then $X = U \cup V$, for some disjoint non-empty open subsets U and V of X. But then, the non-constant map $f: X \to 2_D$ sending U to $\{a\}$ and V to $\{b\}$ turns out to be continuous, which contradicts (iv).

Theorem 3:

- (i) Connectedness is preserved under continuous maps.
- If *D* is disconnected subset of a space *X* with separation U & V and *C* is connected with $C \subseteq D$, then either $C \subseteq U$ or $C \subseteq V$.
- (iii) If A is a connected subset of a space X and $A \subseteq B \subseteq \overline{A}$, then B is also connected. In particular, \overline{A} is also connecetd.
- (iv) If $\{A_i\}_{i\in I}$ is a collection of connected subsets of a topological space X such that $\bigcap_{i\in I}A_i\neq\emptyset$, then $\bigcup_{i\in I}A_i$ is connected in X.
- (v) If X and Y are connected spaces, then the product space $X \times Y$ is also connected.

Proof: (Outlines only)

- (i) Let $f: X \to Y$ be a cont. onto map and X be connected. Suppose that Y is not connected and (U, V) is a separation of Y. Then it can be verified that $f^{-1}(U) \& f^{-1}(V)$ forms a separation of X, contradiction. So, Y is connected.
- (II) (Left as an exercise to the students).

- (iii) Suppose that (C,D) is a separation of B in X, i.e., $B=C\cup D$. Then $A\subseteq C$ or $A\subseteq D$ (using (ii)). So, let $A\subseteq C$. Then $A\cap D=\emptyset$. Here $B\cap C\neq\emptyset\neq B\cap D$. So, pick any $x\in B\cap D$, then $x\in B$ and $x\in D$. As $A\cap D=\emptyset$, so $x\notin \overline{A}$, but $x\in B\subseteq \overline{A}$, so $x\in \overline{A}$, contradiction. Hence, B is connected.
- (iv) If $\bigcup_{i \in I} A_i$ is not connected, then we must have a separation (U,V) of $\bigcup_{i \in I} A_i$ in X. As $\bigcap_{i \in I} A_i \neq \emptyset$, so pick any $x \in \bigcap_{i \in I} A_i$. Then either $x \in U$ or $x \in V$. Suppose that $x \in U$. As $x \in A_i$ and is connected, so $A_i \subseteq U, \forall i \in I$, so $\bigcup_{i \in I} A_i \subseteq U$, but then (U,V) cannot be a separation of $\bigcup_{i \in I} A_i$, contradiction. Thus, $\bigcup_{i \in I} A_i$ is connected.
- (v) We know that $\{x\} \times Y \cong Y$ and $X \times \{y\} \cong X, \forall x \in X \& \forall y \in Y$, so the sets $\{x\} \times Y$ and $X \times \{y\}$ and hence $(\{x\} \times Y) \cup (X \times \{y\})$ are connected in $X \times Y$. Now the connectedness of $X \times Y$ follows from the fact that $X \times Y = \bigcup_{y \in Y} \left[(\{x\} \times Y) \cup (X \times \{y\}) \right]$, for any $x \in X$.
- Note: From (v) we conclude that, if $X_1, ..., X_n$ are connected ces, then the product space $X_1 \times \cdots \times X_n$ is also connected.

References:

- James R. Munkres, *Topology*, 2nd ed., PHI.
- Colin Adams and Robert Franzosa, *Introduction to Topology: Pure and Applied*, Pearson.
- Ryszard Engelking, General Topology, Heldermann Verlag.

THANK YOU