Objectives
Introduction

Generalized Flow
of Language

Program
Structures

C Language
Tokens

Exercise

References

Introduction to Programming-Il|

Introduction to C Programming-1

Course: BTech in CSE

Course Name: Programming for Problem Solving
Course Code:

Semester: Il

Session: 2019-20

Mr. Joynath Mishra
Assistant Professor (Guest)
Department of Computer Science and Information Technology

Mahatma Gandhi Central University
Bihar, INDIA

April 23, 2020

Objectives
Introduction

Generalized Flow
of Language

Program
Structures

C Language
Tokens

Exercise

References

Objectives

Introduction

Generalized Flow of Language

Program Structures

© 000

e C Language Tokens
@ \dentifier
@ Keywords
@ Constants
@ Strings
Special Characters
@ Operators

e Exercise
0 References

Objectives

Objectives
Introduction

Generalized Flow L.
of Language Objectives

Program @ Study on C language tokens
Structures

@ Study on C programming structure
C Language
Tokens

Exercise

References

Objectives
Introduction

Generalized Flow
of Language

Program
Structures

C Language
Tokens

Exercise

References

Introduction

It was developed by Dennis Ritchie at AT&T Bell Labs, the USA between 1969 and 1973[1].

It was a UNIX OS developed project named as Basic Combined Programming Language(BCPL, called
as B language) project at MIT, USA.

It fill up the gap between low level to high level programming(OOPs).

It follows divide and conquer mechanism to solve a problem, hence it is modular programming (top-
to-bottom). Whereas, Object Oriented Programming(OOPs) follows procedural structure(button-up).

It can program in register and variables both.

Hardware level programming is created by using C language.

LINUX kernel is developed in C.

Linux OS, PHP, and MySQL are written in C, whereas C has written in assembly language.
Programs written in C are efficient and fast.

C does not provide Object Oriented Programming (OOP) concepts.

C works as low level language as well as high level language, hence it is called as middle level language.
v

Generalized Flow of Language

Language Tokens
Conditional Operation
Iteration Condition
Function Creation
Objectives Specialized Tools Creation

File Handling

C Language Sections

@ Documentations (Documentation Section at top of any program; by using \\or * ..x\)

Introduction

Generalized Flow
of Language

Program
Structures

C Language

Tokens Preprocessor Statements (Link Section; defined by #)

(]
@ Global Declarations (Definition Section)

@ The main() function(Local Declarations and Program Statements & Expressions)
(]

User Defined Functions

| A,

1/0 Management

Exercise

References @ End-user interaction is performed by buffer stream files.
@ Standard input, output and error file are responsible to make such interaction.

@ stdin associated with user input stream, stdout associated with stdin and corresponding output, stderr
associated with output stream and error message.

<

Objectives
Introduction

Generalized Flow
of Language

Program
Structures

C Language
Tokens

Exercise

References

Program Structures

Source Code (C Language)

1

#include"stdio.h" /*Preprocessor search file and Load header
file into memory*/

int main() /*Execution starts from main() and it is
called as user defined library functionx/

{

printf ("Welcome to C Language World!!!");

return 0; /*Any function should return a value to indicate
the successful completion of it*/

}

Execution (LINUX Terminal)

Compile: "cc example.c -o example”

View Machine Code(not necessary): "xxd example”
Execute: "./example”

Status (return from last execution): "echo $?”

Welcome to C Language World!!!

Objectives

Introduction

Generalized Flow
of Language

Identifier

Keywords
Program .
Structures Strings

Constants

C Language

Tokens Special Characters

Operators

Exercise

References

Identifiers

@ It indicates names given to a program element such as variable, array, function(user defined).

Objectives @ The first character in an identifier must be an alphabet or an underscore and can be followed only by

any number alphabets, or digits or underscores.
Introduction

@ They must not begin with a digit.
Generalized Flow .
of Language @ Uppercase and lowercase letters are distinct. That is, identifiers are case sensitive.
Program @ Commas or blank spaces are not allowed within an identifier.
SIS D @ Keywords cannot be used as an identifier.
(I:':’"g“age @ Identifiers should not be of length more than 31 characters.

okens
@ Identifiers must be meaningful, short, quickly and easily typed and easily read.
@ It is two types as internal(local) and external(global) identifier.
”
Identifiers

Exercise @ int price;

References @ double interest;

Objectives
Introduction

Generalized Flow
of Language

Program
Structures

C Language
Tokens

Exercise

References

Identifiers (Contd...)

Data Types

[float

= uoid

[Primitive OT

[char ~|: sighed Enum
unsigned

Data Types in C

v v

User Definad DT

Typedef
flaat
double
long double
int
Iang int
unsigned ine
long lang int
unsigned long leng int
short int

unsigned short int

Figure 1: Different Data Types used in C Language.

Derived OT

— Array
= Fointer

[Structures

L—— Unicns

Objectives
Introduction

Generalized Flow
of Language

Program
Structures

C Language
Tokens

Exercise

References

Identifiers (Contd...)

Identifier Range, Format Specifier and Variable Declaration

Ranga

Figure 2: Different Identifier Data Type, Range and Memory Occupation.

Table 1: C Language Format Specifiers

Y%c
%d or %i
%f
%h
%o
Yox
%u
%ld
%lf
Y%s

a single character

a decimal integer

a floating point number
a short integer

a octal number

a hexadecimal number
a unsigned integer

a long data type

a double

a string

Table 2: Automatic variable declaration and initialization.

int x;

float x;

int x;

int x;

char ch;

char name[20];
bool x;

x = 5;
x=3.7E12;

x = 012;

x = 0x12;
ch="T"
name="JNM"
x—false;

define Pl 3.14

int x=5;

float x=3.7E12;

int x = 012;

int x = 0x12;

char ch="T";

char name[20]="JNM";
bool x=false;

Keywords

@ Some words are reserved in C compiler to make sense of particulat syntax, called as keywords or reserved
words.

Objectives

Introduction @ These words cannot be used as identifier.

Generalized Flow
of Language

Program Table 3: C Language Keywords
Structures

.(l:.otzzfuage auto double int struct
Identifier break else long switch
case enum register typedef
char extern return union
const float short unsigned
AEp— continue for signed void
N default goto sizeof volatile
do if static while

Exercise

References

Objectives
Introduction

Generalized Flow
of Language

Program
Structures

C Language
Tokens

Exercise

References

Keywords (Contd...)

#include<stdio.h>

int main() //int is a keyword

{

float a, b, s; //float is a keyword
printf ("Please enter two values:");
scanf ("%f%f", &a,&b);

s=a+b;

printf ("Sum of two numbers = %f", s);

return 0; //return is a keyword

}

Please enter two values:5 6
Sum of two numbers = 11.000000

Constants

P y Constants Secondary Constants

Objectives @ Array
Table 4: C Language Primary Constants
Introduction @ Pointer
Generalized Flow (GonStants Description @ Structure
of Language @ Union
Program \a beep sound @ Enum
Structures \b backspace
@ (e \f form .feed
Tokens \n new line
\r carriage return
\t horizontal tab
\v vertical tab

single quote
double quote
\\ backslash

\0 null

Exercise

References =

Objectives
Introduction

Generalized Flow
of Language

Program
Structures

C Language
Tokens

Exercise

References

Constants (Contd...)

#include<stdio.h>
const int EMPID = 150;
int main()

{

2
3
4
5 const double salary = 20000;

6 printf ("Employee Id = %d", EMPID);

7 printf ("Employee salary = %5.2f", salary);
8 return O;

9

Employee Id = 150
Employee salary = 20000.00

Objectives
Introduction

Generalized Flow
of Language

Program
Structures

C Language
Tokens

Exercise

References

Strings

#include <stdio.h>
> int main ()
3

{

char name [20];

printf ("Enter your name: ");
scanf ("%s", name);

printf ("Your name is %s.", name);
return O;

IS

© ® N o o

Enter your name: mishra
Your name is mishra

Special Characters

| characters are not use for

| Characters

Objectives

Introduction Table 5: C Language Special Characters

Generalized Flow

of Language comma(,) < > dot(.) underscore(_)
Program parentheses(() parentheses()) semi-colon(;) $ colon(:)
Structures percent(%) square bracket([) square bracket(]) hash(#) ?

single quote() ampersand(&) bracket open({) bracket close(}) double quote(”)
C Language power() ! multiply(*) front slash(/) pipe(|)
foers minus(-) \ tilde(~) plus(+)

White Space Characters

Blank space, newline, horizontal tab, carriage, return and form feed.

Exercise

References

Control Characters

The characters which don't occupy any printing position, called as control characters such as NUL, DEL.

Objectives
Introduction

Generalized Flow
of Language

Program
Structures

C Language
Tokens

Exercise

References

pe of Operators

Operators are important to form any expression and to perform any arithmetic and logical operations.

Arithmetic Operators (++, —, *,/, %, +,
Relational Operators (>, >=, <, <=, =
Logical Operators (&&, ||, !)
Assignment Operators (=, +=, -=)
Pointer Operators (*)

Bitwise Operators («, »)

Special Operators (comma(,), sizeof())

Conditional Operators (?:)

)

)

Exercise

Objectives

Etodiction What are the rules to define identifier in C language?

Generalized Flow What do you mean by reserved words in C and what are these?
of Language
Write a program in C language to create a critical beep sound in system.
Program

Structures What are the types of constants in C language?

C Language Describe string manipulation in C language.

WL What do you mean by special character, white space characters and control characters?

What are the input separation mechanism at time of input insertion in executed C code?

Exercise

References

References |

Objectives

Introduction

(et (At @ D. M. Ritchie, “The development of the c language,” ACM Sigplan Notices, vol. 28, no. 3, pp. 201-208, 1993.
of Language

Program
Structures

S. Jain, Programming and Problem Solving through C Language Design. BPB Publications, 2003

C Language K. Yashwant, “Let us c,” Array and pointers, 7th edition, BPB publication, 1999.
Tokens

Exercise

References

Objectives

Introduction

Generalized Flow —‘,—91 0046174189

of Language

Program
Structures

C Language
Tokens

BA: ‘ jaynath4025@gmail.com ‘

Thank You...

References

	Objectives
	Introduction
	Generalized Flow of Language
	Program Structures
	C Language Tokens
	Identifier
	Keywords
	Constants
	Strings
	Special Characters
	Operators

	Exercise
	References

