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• Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson method 
for computing the maximum flow in a flow network in much mor optimized 
approach.

• Edmonds-Karp is identical to Ford-Fulkerson except for one very important 
trait. The search order of augmenting paths is well defined.

• The augmenting path is a shortest path from s to t in the residual graph (here, 
we count the number of edges for the shortest path).

Edmonds-Karp Algorithm



• It uses the breadth-first search approach

• This variant of Ford-Fulkerson algorithm runs in O(nm2)

Edmonds-Karp Algorithm
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This is the original network.
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Ford-Fulkerson Max Flow
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This is residual graph after 

the 1st augmentation.



Ford-Fulkerson Max Flow

4

11

2

2
1

2

3

3

1

s

2

4

5

3

t

Choose a shortest path from 

s to t.



Ford-Fulkerson Max Flow
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Ford-Fulkerson Max Flow
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