Sunil Kumar Singh, PhD

Assistant Professor,
Department of Computer Science and Information Technology

School of Computational Sciences, Information and Communication Technology,
Mahatma Gandhi Central University, Motihari
Bihar, India-845401

24-04-2020



Outline

* Edmond-Karp Algorithm
* Conclusion

e References

24-04-2020



Edmonds-Karp Algorithm

 Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson method
for computing the maximum flow in a flow network in much mor optimized
approach.

 Edmonds-Karp is identical to Ford-Fulkerson except for one very important
trait. The search order of augmenting paths is well defined.

* The augmenting path is a shortest path from s to t in the residual graph (here,
we count the number of edges for the shortest path).



Edmonds-Karp Algorithm

* |t uses the breadth-first search approach

* This variant of Ford-Fulkerson algorithm runs in O(nm?)



Ford-Fulkerson Max Flow

This is the original network.



Ford-Fulkerson Max Flow

Choose a shortest path from
S to t.



Ford-Fulkerson Max Flow

This Is residual graph after
the 1st augmentation.



Ford-Fulkerson Max Flow

Choose a shortest path from
s tot.



Ford-Fulkerson Max Flow

The residual graph after the
2"d augmentation.



Ford-Fulkerson Max Flow

Choose a shortest path from
s tot.



Ford-Fulkerson Max Flow

The residual graph after the
3'd augmentation.



Leto; (s, X) theshortest path distance from s to x in the residual

network G; , where each edge has unit distance.
Lemma
When Edmonds- Karp algorithm runs, &, (S, X) increases

monotonically with each flow augmentation.
Proof |Denote &, (x) =5, (s, X).

For contradiction, suppose flow f'is obtained from flow f

through an augmentation and o,.(v) < o, (v) for some node v.

W.l.g., assume o;.(v) Is the smallest among such v, I.e.,
O:;(U)<o:.(V) = S;.(U) =5, (u).



Suppose (u, V) is on the shortest path froms tovin G;..

Casel. (u,v) e G;.

0, (V)< (U)+1<5,.(U)+1=0,.(v), (—><«).

Case 2.(u,Vv) ¢ G;. Then (v,u) must be on augmenting pathin G;.
0, (V)=0;(U)-1<05;.(U)-1=5,.(V)—2<0,.(v),(—>«).
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(u,v)iscritical in G; if (u,v) hasthe smallest capacityin
augmenting path pin G, .

Lemma

Each (u,v) can be criticalat most (n+1)/2 times.

Proof
Suppose (u, V) is criticalin G,. Then (u,Vv) will dispear in next

residual graph. Before(u,Vv) appearsagain, (v,u) has to appear
In augmenting path of a residual graph G;.. Thus, we have

o (U)=0,(v)+1.

Since o, (v)<o,.(v), wehave

0. (U)=0,(V)+1>6,(V)+1=0;(u)+2.



Theorem
Edmonds- Karp algorithm runs in time O(|V |- | E [*).
Proof
In everyaugmentation, there exists an arc critical.
Since eacharc can be criticalat most (n+1)/ 2 times,
thereareat most O(|V |-| E|) augmentations.

In each augmentation, finding the shortest path
takesO(| E |) time.
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