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Two level energy system 

• Consider a system having two non-degenerate microstates

with energies ε1 and ε2. The energy difference between the

levels is ε= ε2- ε1

Let us assume that the system is in

thermal equilibrium at temperature T.

So, the partition function of the system is –

The probability of occupancy of these states is given by -
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or, and

where

From (2) and (3), we can see that P1 and P2 depends on T.

Thus, if T=0, P1=1 and P2=0 (System is in ground state)

When T<<θ, i.e. kT<<ε then P2 is negligible and it begins to

increase when temperature is increased.
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• Consider a paramagnetic substance having N magnetic atoms per

unit volume placed in an external magnetic field B. Assume that

each atoms has spin ½ and an intrinsic magnetic moment μB. Let us

suppose that the energy levels are non-degenerate, i.e. there is only

one state in each level. As we know that the magnetic energy of an

atom in an external field is - μB.B cosθ.

• The energy in the lower state (in which μB is parallel to the

magnetic field B) is ε1 = - μB.B

• The energy of the higher state (in which μB is anti-parallel to the

magnetic field B) is ε1 = μB.B

Thus, if the system is in thermal equilibrium at temperature T, then

the partition function of the system can be written as -
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If N1 and N2 are the number of atoms whose moments are

parallel and anti-parallel to B, respectively then

Where N=(N1+N2) denotes the total number of atoms.

The excess of atoms aligned parallel to B over those aligned

anti-parallel to B is given by –

Putting the value of Z from (4), we get

The net magnetic moment of the system is therefore,
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For weak field and high temperatures, μBB<<kT, then

and, Magnetic susceptibility is given by

or, (Curie constant)

Also, we know Msat=NμB then from (8)
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Negative Temperature

• Let us consider a freely moving molecule of a perfect gas

or a harmonic oscillator characterized by an infinite

number of energy levels.

• As the temperature of the system is increased, more

molecules will be raised to higher energy states thereby

making the system more energetic and thus greater

disorder.

• Thus, entropy increases as the energy increases. It means

(dU/dS) will always be positive, i.e. positive temperature

states.
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However, let us proceed again by taking the previous example of

paramagnetic atoms where occupation number of the two level

system is given by –

and

where N=(N1+N2) denotes the total number of atoms.

or,

Since, ε2> ε1→T will be positive (if N1>N2).

Now, on reversing the direction of magnetic field, the dipoles

oriented parallel to the field and having energy ε1 will be

oriented anti-parallel to the field and have a higher energy.
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But, the dipoles originally anti-parallel to the field and having

energy ε2 will now be oriented parallel to the field and have a

lower energy.

Let the average occupation numbers of the new lower and higher

energy states be N'1 and N'2, respectively. Therefore, N'2=N1 and

N'2>N'1. This is referred as ‘population inversion’.

Now,

Since, N'2>N'1, this state will correspond to negative temperature.
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Figure: (a) in thermal equilibrium, N1>N2; (b) case of population inversion, N2>N1. 

Vertical lines signifies the level of occupancy of a state. [Garg, Bansal and Ghosh]

Figure: (a) plot of entropy as a function of internal energy for a two level system, ε1=0 

and ε2=ε (b) plot of temperature as a function of internal energy. [Garg, Bansal and Ghosh]



1. From eqn. (2), it can be seen that for T=0, P1≈1, i.e. all the

states will lie in the lower energy state ε1=0; N1=N and N2=0.

This is a state of minimum disorder and corresponds to S=0.

Internal energy of the system will also be zero.

2. As T increases, the occupancy in the higher level begins to

takes place. As T→∞, P1=P2=1/2, i.e. N1=N2=1/2 and

internal energy will be Nε/2. This state will correspond to

maximum disorder and maximum entropy.

3. If more atoms tend to occupy the higher energy states such

that N2>N1, i.e. population inversion has achieved. In a case,

if N2=N then internal energy will be Nε. This corresponds to

state of minimum disorder and zero entropy. Eqn. (13) gives

the negative temperature. It gives the state of negative

temperature. 11
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