# **Atomic and Molecular Physics**

**Course Code: PHYS4009** 

**Lecture Topic** 

# Infrared Spectroscopy

Ву

# Prof. Sunil Kumar Srivastava

Department of Physics

Mahatma Gandhi Central University

Motihari, Bihar-845401

## **Outline**

- Infrared radiation
- Infrared Spectroscopy
- Theory of Infrared Spectroscopy
- Selection Rule for Vibrational Transition
- IR-Active and Inactive vibrations of CO<sub>2</sub>
- Finger Print Regions of Molecular Vibrations
- Infrared Spectra
- Advantages and Disadvantages of IR Spectroscopy

# **Infrared Radiation**

### Discovery of IR radiation

In year 1800 the astronomer Friedrich Wilhelm Herschel observed a kind of invisible radiation by directing the sunlight through a glass prism. He called it infrared radiation.





## Infrared Spectroscopy

IR spectroscopy measures the infrared light that is absorbed by the substance. The infrared portion of the electromagnetic spectrum is divided into three regions:



Far-infrared: approximately 400 - 5 cm<sup>-1</sup> (25 - 2000 µm), lying adjacent to the microwave region, has low energy and may be used for rotational spectroscopy

Mid-infrared: approximately 4000 - 400 cm<sup>-1</sup> (2.5 - 25 µm) may be used to study the fundamental transitions of molecular vibrations and associated rotational-vibrational structure

Near-IR : approximately 15000 - 4000 cm<sup>-1</sup> (0.7 - 2.5 µm) can excite overtone or combination bands of molecular vibrations

# Theory of Infrared Spectroscopy

An infrared transition between lower and upper states with vibrational wavefunctions  $\psi_{v'}$  and  $\psi_{v'}$ , respectively, depends on the transition dipole moment, which is given by:

$$R_{v'v''} = \int \psi_{v'}^* \mu \psi_{v''} dx$$

The intensity of absorption corresponding to vibrational transition  $v' \to v'$  is governed by the transition dipole moment integral  $R_{v'v''}$ . where x is  $(r - r_e)$ , the displacement of the internuclear distance from equilibrium. The dipole moment  $\mu$  is zero for a homonuclear diatomic molecule, resulting in  $R_{v'v''} \to 0$  and all vibrational transitions being forbidden. For a heteronuclear diatomic molecule m is non-zero and varies with x.

This variation of dipole moment with internuclear separation can be expressed as a Taylor series expansion:

$$\mu = \mu_e + \left(\frac{d\mu}{dx}\right)_e x + \frac{1}{2!} \left(\frac{d^2\mu}{dx^2}\right)_e x^2 + \dots$$

where, the subscript 'e' refers to the equilibrium configuration. The transition dipole moment now becomes:

$$R_{v'v''} = \mu_e \int \psi_{v'}^* \psi_{v''} dx + \left(\frac{d\mu}{dx}\right)_e \int \psi_{v'}^* x \psi_{v''} dx + \dots$$

Since  $\psi_{v'}$  and  $\psi_{v'}$  are the eigen function of the same Hamiltonian, they are orthogonal, which means that, when  $v' \neq v''$ ,

$$\int \psi_{v'}^* \psi_{v''} dx = 0$$

therefore, 
$$R_{v'v''} = \left(\frac{d\mu}{dx}\right)_{o} \int \psi_{v'}^* x \psi_{v''} dx + \dots$$

## Selection Rule for Vibrational Transition

As the vibrational transition dipole moment is given by

$$R_{v'v''} = \left(\frac{d\mu}{dx}\right)_e \int \psi_{v'}^* x \psi_{v''} dx + \dots \dots$$

For the infrared active transition, the  $R_{v'v''}$  should be non-zero. The above equation has two term;  $\left(\frac{d\mu}{dx}\right)_e$  and an integral  $\int \psi_{v'}^* x \psi_{v''} dx$ . In order to have  $R_{v'v''}$  non-zero, both term should be non-zero. Therefore, for infrared active transition, following condition should meet:

 $\left(\frac{d\mu}{dx}\right)_{\rho}\neq 0$  i.e. there must be change of dipole moment at equilibrium

inter-nuclear separation during vibration and  $\int \psi_{v'}^* x \psi_{v''} dx \neq 0$ , the integral is non-zero only when,  $\Delta v = \pm 1, \pm 2, \pm 3, ...$  which constitute the vibration selection rule for infrared transition.

The transition intensities are proportional to  $|R_{v'v''}|^2$  and therefore to





Figure shows variation of dipole moment  $\mu$  with internuclear distance in a typical heteronuclear diatomic molecule. Obviously,  $\mu \to 0$  when  $r \to 0$  and the nuclei coalesce. For neutral diatomic molecules,  $\mu \to 0$  when  $r \to \infty$  because the molecule dissociates into neutral atoms. Therefore, between r = 0 and  $r = \infty$ , there must be a maximum value of  $\mu$ .

138000 -2.295000 3986.256265

In figure it is shown that the maximum is at  $r < r_e$ , giving a negative slope  $d\mu/dr$  at  $r_e$ . If the maximum were at r > re there would be a positive slope at  $r_e$ . It is possible that the maximum is at  $r = r_e$ , in which case  $d\mu/dr = 0$  at  $r = r_e$  and the  $\Delta v = 1$  transitions, although allowed, would have zero intensity.

Hetero-nuclear diatomic



Infrared active

Homo-nuclear diatomic



Infrared inactive

In general for polyatomic molecules for transition to be infrared active

$$\frac{d\mu}{dQ} \neq 0$$

where, Q is the normal coordinate of the vibration. For a diatomic: Q = r (bond length).

# IR active and inactive vibrations of CO2



Symmetrical stretch



Asymmetrical stretch







IR inactive (no change in dipole moment)



IR active (change in dipole moment)



IR active (change in dipole moment)

# Finger print regions of molecular vibrations

#### Single Bonds to Hydrogen

| Bond       | Wavenumber/cm <sup>-1</sup> | Notes                                                                                |
|------------|-----------------------------|--------------------------------------------------------------------------------------|
| С–Н        | 3000 – 2850                 | Saturated alkanes, limited value as most organic compounds contain C-H               |
| =C-H       | 3100 – 3000                 | Unsaturated alkene or aromatic                                                       |
| ≡С–Н       | 3300                        | Terminal Alkyne                                                                      |
| О=С-Н      | 2800 and 2700               | Aldehyde, two weak peaks                                                             |
| О–Н        | 3400 – 3000                 | Alcohols and Phenols. If hydrogen bonding present peak will be broad 3000–2500 (e.g. |
| O–H (free) | ~3600                       | carboxylic acids)                                                                    |
| N-H        | 3450 – 3100                 | Amines: Primary - several peaks, Secondary - one peak, tertiary - no peaks           |

#### Double Bonds

| Bond | Wavenumber/cm <sup>-1</sup> | Notes                     |
|------|-----------------------------|---------------------------|
| C=O  | 1840 - 1800 & 1780 - 1740   | Anhydrides                |
| C=O  | 1815 – 1760                 | Acyl halides              |
| C=O  | 1750 – 1715                 | Esters                    |
| C=O  | 1740 – 1680                 | Aldehydes                 |
| C=O  | 1725 – 1665                 | Ketones                   |
| C=O  | 1720 – 1670                 | Carboxylic acids          |
| C=O  | 1690 – 1630                 | Amides                    |
| C=C  | 1675 – 1600                 | Often weak                |
| C=N  | 1690 – 1630                 | Often difficult to assign |
| N=O  | 1560 - 1510 & 1370 - 1330   | Nitro compounds           |

### Triple Bonds

| Bond | Wavenumber/cm <sup>-1</sup> | Notes                   |
|------|-----------------------------|-------------------------|
| C≡C  | 2260 – 2120                 | Alkynes, bands are weak |
| C≡N  | 2260 - 2220                 | Nitriles                |

00 -2,295000 3985.230200

## Single Bonds (not to Hydrogen)

| Bond      | Wavenumber/cm <sup>-1</sup> | Notes                                 |
|-----------|-----------------------------|---------------------------------------|
| С-С       | Variable                    | No diagnostic value                   |
| C-O, C-N  | 1400 – 1000                 | Difficult to assign                   |
| C-Cl      | 800 – 700                   | Difficult to interpret                |
| C–Br, C–I | Below 650                   | Often out of range of instrumentation |

#### **Bending Vibrations**

| Bond  | Wavenumber/cm <sup>-1</sup> | Notes                                                            |
|-------|-----------------------------|------------------------------------------------------------------|
| R-N-H | 1650 – 1500                 | Take care not to confuse N-H bend with the C=O stretch in amides |
| R-C-H | 1480 – 1350                 | Saturated alkanes and alkyl groups                               |
| R-C-H | 1000 – 680                  | Unsaturated alkenes and aromatics                                |

## Infrared Spectra

IR spectrum which is a plot of measured IR intensity (absorbance or transmittance) versus wavelength (or wavenumber) of light.

#### Absorbance

#### Transmittance



38000 -2.295000 3986.256265

## Advantages and Disadvantages of IR Spectroscopy

## Advantages

- A universal technique i.e. solids, liquids, gases, semi-solids, powders, and polymers can be routinely analyzed.
- IR is relatively fast and easy technique.
- IR is very sensitive. Micro to nano gram quantities can routinely be detected.

## Disadvantages

- Homonuclear compounds don't absorb.
- Aqueous solutions difficult to analyze because the strong absorbance of water.
- Some compounds give broad bands that interfere with other compounds.
- Complex mixtures are difficult to analyse
- Dark (black) compounds often absorb the IR beam completely, i.e.
   0% transmittance.

# **Books for Further Reading**

- 1. Fundamentals of Molecular Spectroscopy by C. N. Banwell (McGraw Hill)
- 2. Basic Atomic & Molecular Spectroscopy by J. M. Hollas (Royal Society of Chemistry)

