Major Histocompatibility Complex

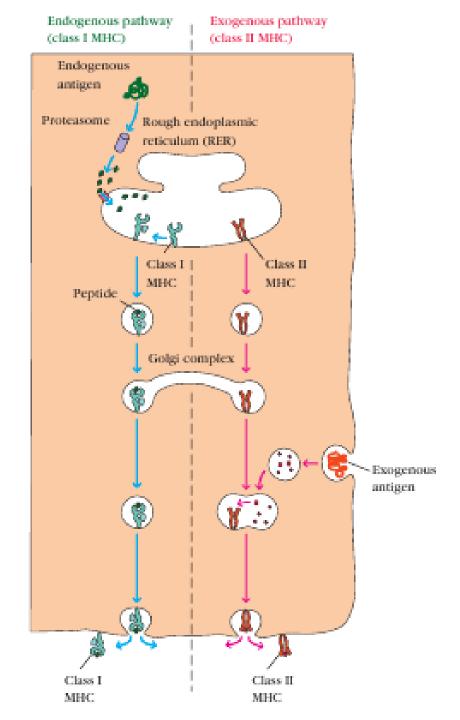
PART- 4

Course Code: ZOOL-2023; Course Title: Immunology

Programme: B.Sc. Zoology (Hons.)

Dr. Kundan Kishor Rajak
Assistant Professor
Department of Zoology
School of Life Sciences
Mahatma Gandhi Central University Bihar

Pathways for processing antigen


Two pathways are proposed-

- 1. Cytosolic or Endogenous pathway
- 2. Exogenous pathway

Cytosolic or Endogenous Pathway

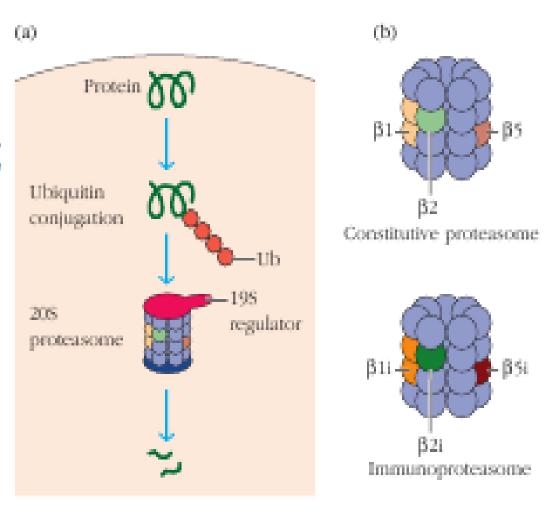
- Antigenic peptides for class I MHC molecule are processed through cytosolic or endogenous pathway.
- For this pathway, antigen are generated within cell.
- Proteasome (A proteolytic system): degraded irregular/ antigenic intracellular proteins into short peptide.

Overview of endogenous and exogenous pathways for processing the antigenic peptides

General pathway of protein degradation

PROTEASOME

- Found in all eukaryotic cell
- Degrade proteins into short peptides
- Size- 20S
- Composed of 14 subunits
- Structure: barrel like symmetrical ring
- Target protein degrade in proteasome when ubiquitin (small protein) attached.


PROTEASOME CONT.....

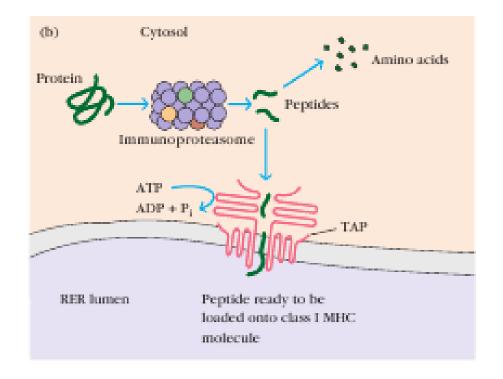
- Proteasome complex consists of
 - 20S base
 - 19S regulatory component
- Central hollow of proteasome degrade ubiquitinprotein complex.
- Cleavage of peptide bond- ATP dependent.
- Break down of protein through proteasome complex is also utilize by the immune system.
- Degraded antigenic peptides are displayed by APCs through class I MHC molecules.

Specific pathway of protein degradation IMMUNOPROTEASOME

- Found in infected APCs
- Size equal to proteasome
- Its unique components are induced by
 - Interferon-γ and
 - $-TNF-\alpha$
- Interferon- γ and TNF- α act as signal molecule for LMP2 and LMP7 genes
- Product of LMP2 and LMP7 genes (replacement catalytic protein subunit) convert standard proteasome into immunoproteasomes.
- Immunoproteasomes work more efficiently than standard proteasome.

PROTEASOME & IMMUNOPROTEASOME

Transporter Protein- TAP


- TAP-membrane spanning heterodimer
- Consists of two protein
 - >TAP1 and
 - **≻TAP2**
- Have two domain
 - > RER lumen domain
 - > Cytosolic domain-ATP binding
- Antigenic peptides formed by proteasome are translocated by TAP into RER lumen.
- Hydrolysis of ATP required during transportation.

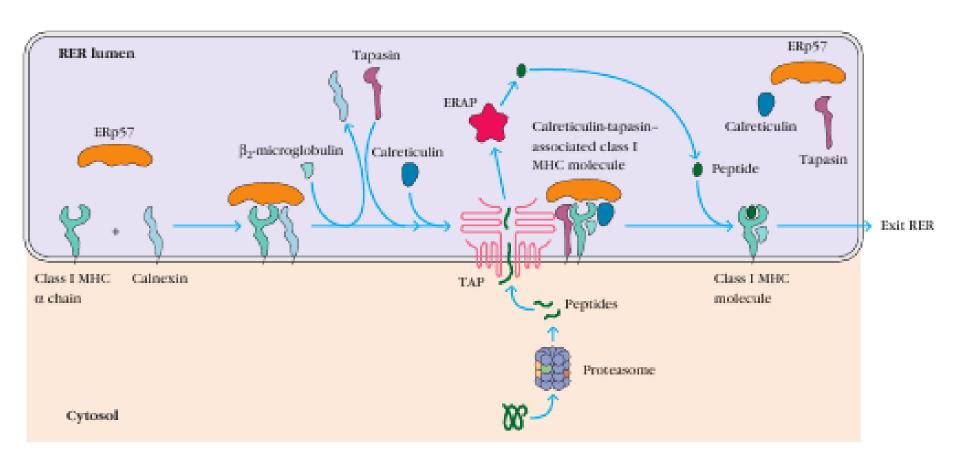
- TAP show affinity for antigenic peptide (8-16 AAs).
- ERAP (Endoplasmic reticulum aminopeptidase)
 - Found in ER lumen
 - Trimmed longer peptide
- TAP1 and TAP2 protein synthesized by
 - TAP1 and TAP2 gene
 - Mapped within class II MHC region
 - Allelic form exist in population
- Deficiency of TAP leads to disease syndrome.

Transporter Protein-TAP and processing of antigenic peptides

RER membrane

RER lumen

Deficiencies in TAP Can Lead to Bare Lymphocyte Syndrome


Role of molecular chaperone in assembly of Class I MHC Molecule

- Molecular Chaperones are-
- Calnexin
 - found in ER membrane
 - Help in folding of class I α chain with ERp57 protein (enzymatic activity)
- Calnexin release after assembling of α chain and β microglobulin.

- Molecular chaperone-

 - Tapasin
 - Calreticulin and \(\) immediately associated with class I MHC molecule after release calnexin
- Tapasin (TAP associated protein)-
 - √ Bring transporter in proximity with class I MHC molecule
 - ✓ Allow acquiring of antigenic peptide with class I MHC molecule.
- ERAP1
 - ✓ Help in removing residue from amino-terminal of peptide to enhance the binding capability with class I molecule.

Assembly and stabilization of class I MHC molecules

Thanks