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Introduction to Molecular Orbital
Now we shall move from atom to molecule for further study. This 
will require the understanding of electronic terms symbol for 
molecular orbital.
Terms Symbol for energy levels:
The atomic states are represented by spectral terms (2S+1)LJ

 

. 
Here L= total  orbital angular momentum, S

 
= total spin  and J

 
= 

S
 

+ L (vector addition).

In case of molecule, there are no law of conservation for total 
angular momentum. Because, electric field of several nuclei is 
not centrally symmetric. But for diatomic molecules, the electric 
field is axially symmetric  about the axis passing through two 
nuclei. Hence it angular momentum component is conserved.



•
 

The molecular energy levels can be classified 
according to the value of orbital angular momentum 
component. The quantum number for this component 
is denoted by Λ. For Λ

 
= 0,1,2…. the electronic terms 

will be denoted by Σ,Π, Δ
 

…. etc. The total spin is 
denoted as (2S+1) in upper left prefix as (2S+1)

 
Λ

 
, 

where S=s1

 

+s2

 

.
•

 
There is also reflection symmetry about axis, denoted 
as ±.  The overall notation would be (2S+1)

 
Λ

 
±.There is 

another type of symmetry: the parity symmetry 
(Hamiltonian remains unchanged if all electrons 
coordinates change sign) at the center point bisecting 
the line joining the two nuclei. Even wave function 
denotes by g and odd denoted by u. The electronic 
term for such diatomic molecules are denoted as 2S+1)

 Λ
 

±
u,g

 

. 



Molecular Orbitals
•

 
Now under the Born Oppenheimer approximation,  
we shall try to solve Schrödinger equation for 
electrons in case of molecules.

•
 

A possible approach is to form a trial function of the 
molecule by using atomic wave functions of each 
atom.

•
 

For ground state and low-lying excited states,  the 
linear combination of  atomic ground state wave 
functions associated with different nuclei are 
considered in practice to form trial functions.

•
 

These trail functions are referred as molecular 
orbitals. We here use variational

 
method to obtain 

the ground state wave function and energy of a 
molecule.This

 
method is known  as linear 

variational
 

method.



Let us consider a trail wave function    ψ
 
as 

given by a linear combination of atomic 
orbitals

 
i

 

where i(=1,2,3….) denotes 
different nuclei,

where, ci
 

are the parameters to be determined by 
variational

 
method for a given molecular Hamiltonian.

Here we are introducing two special integrals:

Here, Hij= Hamiltonian matrix and Sij= overlap integrals

Hij

 

≡
 

<i

 

│H│j

 

>   ;    Sij

 

≡
 

<i

 

│j

 

>



The energy expectation is given by : 

Now we want to minimise
 

the energy with respect to 
ck

 

, which requires that

for all i. Hence differentiating the expectation energy 
equation:



This is satisfied if each term in numerator vanishes.

For all k, these equations are known as Secular 
Equations.   
If the functions i

 

s are orthonormal, then the secular   
equations reduces to the familiar eigen

 
value form:

Σi=1→N
 

ci
 

Hik
 

=Eci

From the secular equations with orthonormal
 

functions, 
we have k simultaneous secular equations in k 
unknowns. These equations can also be written in 
matrix notation. This is known as secular determinant.



For a non-trivial solution (i.e
 

ci

 

≠
 

0, for all i ), the 
determinant of secular matrix must be equal to zero.

Therefore the basic procedure in molecular calculations 
is to first calculate the Hamiltonian matrix Hik

 

and 
overlap integral Sik

 

, and then to diagonalise
 

the secular 
determinant to obtain eigenvalues

 
E and coefficients ci

 

.

The procedure, we applied here is linear variation 
theory.



Problem 1:
 

Solve it your self:
If our trial function ψtrial

 

for a molecule is a 
linear combination of two functions 1

 

and 
2

 

, then
 

the secular determinant looks like



Molecular orbital of H2
+

 
ion

•At first we have to consider hydrogen molecular ion where single
 electron moves in the field of two proton  before we study a 

diatomic molecule. 
•This approach is very similar to the atomic quantum mechanics 
where we study hydrogen atom and use its wavefunctions

 
as 

basis for other atoms.
•Let two protons are fixed at position ±R/2 and then applying 
Born-Oppenheimer approximation, the single electron 
eigenequation

 
becomes

where the 2nd and 3rd terms are attractive interactive between 
the electron and the two protons and the last term (constant) is

 the repulsive interaction between two protons. These two 
contributions combine to give total energy with a minimum at an 
equilibrium position R0

 

(the size of the molecule), as shown in Fig. 
given next slide



From the figure we can conclude that
At large separation R → ∞, the electron will be bound to one of nucleus, the 
energy is about −13.6 eV. 
When R → 0, the electron will be bound to Z = 2 nucleus with Energy −13.6Z2

 = −54.4 eV

 

plus nuclear repulsion energy which goes to infinity as R → 0. The 
equilibrium minimum energy E(R0

 

) is between these two positions.

Fig.

 

Hydrogen ion energy as a function of separation of the two protons



We follow the linear combination of atomic orbitals
 

(LCAO) 
procedure to calculate the ground-state energy, using molecular 
orbital method.
We consider a trial wavefunction

 
based on single hydrogen 

ground-state wavefunctions
 

φ
 

= φ1s

 

centered at R/2 denoted as 
φ1

 

and at −R/2 denoted as φ2

 

. Our trial wavefunction
 

is a linear 
combination of these two hydrogen (1s) orbitals

ψ(r,R) = c1

 

φ1

 

+ c2

 

φ2

The overlap integral S is, S = S12

 

= S21

 

= <φ1

 

|φ2

 

>
Note that S11

 

= S22 = 1 due to normalization of 1s orbitals. 
The Hamiltonian matrix
α

 
= H11

 

= H22

 

= <φ1

 

|H|φ1

 

> , β
 

= H12

 

= H21

 

= <φ1

 

|H|φ2

 

>

Where



The secular equation is

This equation has solutions,

The corresponding values for the coefficients

and



The actual values for S, α
 

and β
 

can be calculated exactly by 
using the so-called ellipsoidal coordinates. Here we just quote 
the results. The overlap integral is given by

The diagonal Hamiltonian matrix element is

where the first term is the hydrogen ground-state energy, second 
term J > 0 corresponds to the electrostatic energy between 
electron with charge distribution φ1

2

 

and the nucleus 2



The off-diagonal element is

where K > 0 has no direct classical analogue. It represents the 
interaction between the overlap charge −eφ1

 

φ2

 

and the nucleus1. 
Notice that all three special integrals
S, J,K → 0 as R → ∞.
In summary, the two energies of hydrogen ion using MO are

and the corresponding two states are
ψ+

 

= c+

 

(φ1

 

+ φ2

 

) , ψ1

 

= c−
 

(φ1

 

− φ2

 

)



As both J and K are positive, E+

 

is lower than E−

 

. Their behaviors as functions of 
separation R are shown in next figure given below. There is a clear minimum R0

 
for E+

 

. We refer state ψ+

 

as bonding orbital with lower energy and ψ−

 

as 
antibonding

 

state with higher energy. Numerically, the bonding energy has a

 minimum at R0

 

= 130 pm and the dissociation energy (E1s

 

−E+

 

) is about 170 
kJ/mol. The experimental values are 106 pm and 251 kJ/mol. More accurate 
calculations reveal major bonding energy comes from further shrinkage of the 
orbitals

 

on to the nuclei which is beyond the
simple approximation employed here.

Figure:

 

Energy of bonding state ψ+

 

(denoted as σg

 

) and of antibonding
state ψ−

 

(denoted σu

 

) as function of separation R.



Figure:

 

Charge distribution |ψ|2

 

of H2
+. (a) Bonding state. (b) Antibonding

 

state.

Special integrals using ellipsoidal coordinates

For hydrogen molecule ion, we introduce ellipsoidal coordinates

with volume element in integral



Using the transformation

the integrals become elementary. For example, the overlap integral

Note that S → 0 as R → ∞.
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