NP-completeness part-I (DAA, M.Tech + Ph.D.)

By:

Sunil Kumar Singh, PhD Assistant Professor, Department of Computer Science and Information Technology

School of Computational Sciences, Information and Communication Technology,
Mahatma Gandhi Central University, Motihari
Bihar, India-845401

28-04-2020

Outline

- Introduction
- P & NP
- NP-complete
- NP-Hard
- Determinism & Non-determinism
- Examples
- Conclusion
- References

27-04-2020

Introduction

- Some Algorithm we have seen like.
 - ✓ Sorting $O(N \log N)$
 - ✓ Binary Searching $-O(\log N)$
 - ✓ Shortest Path Finding $O(N^2)$
 - However, some problems only have
 - ✓ Exponential Time algorithm $-0(2^N)$

Size vs time complexity

Size vs cirrie complexity						
N	10	20	30	40	50	60
O(N)	.00001	.00002	.00003	.00004	.00005	.00006
	second	second	second	second	second	second
O(N ²)	.0001	.0004	.0009	.0016	.0025	.0036
	second	second	second	second	second	second
$O(N^3)$.001	.008	.027	.064	.125	.216
	second	second	second	second	second	second
O(N ⁵)	1	3.2	24.3	1.7	5.2	13.0
	second	seconds	seconds	minutes	minutes	minutes
O(2 ^N)	.001	1.0	17.9	12.7	35.7	366
	second	second	minutes	days	years	centuries
O(3 ^N)	.059	58	6.5	3855	2*10 ⁸	10 ¹³
	second	minutes	years	centuries	centuries	centuries

28-04-2020

P and NP

- NP is the set of all decision problems (question with yes or no answer) for which the 'yes'-answers can be verified in polynomial time $(O(n^k))$ where n is the problem size, and k is a constant) by a deterministic Turing machine. Polynomial time is sometime used as the definition of fast or quickly.
- P is the set of all decision problems which can be solved in polynomial time by a deterministic Turing machine.
- Since it can be solved in polynomial time, and also can be verified in polynomial time. Therefore P is a subset of NP.

NP Complete

• A problem X that is in NP is also in NP-Complete it and only if every other problem in NP can be transformed into X in polynomial time.

• So what makes NP-Complete so interesting is that if any one of the NP-Complete problems was to be solved in polynomial time then all NP problems can be solved quickly.

NP Hard

• NP-Hard are problems that are at least as hard as the hardest problems in NP.

• Note that NP-Complete problems are also NP-hard. However not all

NP-hard problems are NP.

Determinism vs. Non-determinism

 Nondeterministic algorithms produce an answer by a series of "correct guesses"

• Deterministic algorithms (like those that a computer executes) make decision based on information.

Examples

NP-Complete Problems

- ✓ Determining whether a graph has a Hamiltonian cycle
- ✓ Determining whether a Boolean formula is satisfiable

NP-Hard Problems

- ✓ The circuit-satisfiability problem
- ✓ Set Cover
- ✓ Vertex Cover
- ✓ Travelling Salesman Problem

TSP is NP-Complete

• The traveling salesman problem consists of a salesman and set of cities.

• The sales man has to visit all the cities starting from one of the city.

• Challenging problem is to minimize the length of the trip.

Justify that why it is NP-Complete?

References

- 1. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to algorithms*. MIT press, 2009.
- 2. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. "Introduction to algorithms second edition." *The Knuth-Morris-Pratt Algorithm, year* (2001).
- 3. Seaver, Nick. "Knowing algorithms." (2014): 1441587647177.

Thank You