Data Collection

Part-II

BY:

DR. VIPIN KUMAR

DEPARTMENT OF COMPUTER SCIENCE &IT

MAHATMA GANDHI CENTRAL UNIVERSITY

MOTIHARI, BIHAR

Outlines...

2. Data Labeling

- THE NEXT TASK AFTER DATA ACQUISITION IS TO LABEL THE DATA.
- THERE ARE MANY CATEGORIES OF DATA LABELING:
 - Use Existing labeling
 - 2. Crowd-based
 - 3. Weak-labeling

2. Data Labeling

- 1. Use Existing labeling:
 - It exploits the existing label to label the unlabeled data e.g. semi-supervised learning
- 2. Crowd-based:
 - Crowdsourcing approach get utilized to label the individual samples. e.g Active learning
- 3. Weak-labeling:
 - It is expensive approach for labeling.
 Data are labeled with less than perfect labels (weak label)

2.1 Utilization of Existing Labels

- SUPERVISED AND SEMI-SUPERVISED MACHINE LEARNING ALGORITHM CAN DIRECTLY APPLIED FOR LABELING THE DATA.
- IN SUPERVISED LEARNING:
 - Classification: to predict the categorical labels using existing labels.
 - Regression: To predict the continuous labels using existing labels.
- IN SEMI-SUPERVISED:
 - Inductive learning
 - Transductive learning

Classification of Data Labeling Techniques

Category	Approach	Machine learning task	Data types
Use Existing Labels	Self-labeled	classification	all
		regression	all
	Label propagation	classification	graph
Crowd-based	Active learning	classification	all
		regression	all
	Semi-supervised+Active learning	classification	text
			image
			graph
	Crowdsourcing	classification	all
		regression	all
Weak supervision	Data programming	classification	all
	Fact extraction	classification	text

Roh, Yuji, Geon Heo, and Steven Euijong Whang. "A survey on data collection for machine learning: a big data-ai integration perspective." IEEE Transactions on Knowledge and Data Engineering (2019).

Classification of Semi-Supervised Learning Techniques

 Roh, Yuji, Geon Heo, and Steven Euijong Whang. "A survey on data collection for machine learning: a big data-ai integration perspective." IEEE Transactions on Knowledge and Data Engineering (2019).

2.2 Crowd-based Techniques

- THERE ARE TWO CATEGORIES IN CROWD-BASED TECHNIQUES:
- ACTIVE LEARNING: IT SELECTS THE MOST INTERESTING SAMPLES TO CROWD FOR LABELING. I HAS HUMAN IN LOOP FOR THE LABELING.
- CROWDSOURCING: IT UTILIZES THE HUMAN RESOURCE FOR LABELING THE DATA WHICH MAY NOT BE THE EXPERT OF THE DOMAIN.
 - Challenges: Quality Control, scalability, User interaction

2.3 Weak Supervision

- Automatically generated labels which may not be good quality of labels as crowdsourcing.
- This type of labeling is feasible for large amount of data.
- In the case of crowdsourcing, its become infeasible to label the data.
- There are two categories:
 - 1. Data Programing
 - 2. Fact extraction

2.3 Weak Supervision

Data Programming:

- It utilizes the multiple labeling function rather than one labeling function.
- Flowchart of Data Programming:

Reference: Roh, Yuji, Geon Heo, and Steven Euijong Whang. "A survey on data collection for machine learning: a big data-ai integration perspective." *IEEE Transactions on Knowledge and Data Engineering* (2019).

2.3 Weak Supervision

- Fact Extraction:
- Fact-extraction is utilized for labeling.
- It is better than manual labeling.

Task	Techniques
Improve Data	Data Clearing
	Relabeling
Improve model	Robust Against Noise
	Transfer Learning

Bibliography:

- ROH, YUJI, GEON HEO, AND STEVEN EUIJONG WHANG. "A SURVEY ON DATA COLLECTION FOR MACHINE LEARNING: A BIG DATA-AI INTEGRATION PERSPECTIVE." IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (2019).
- DEEP LEARNING FOR DETECTION OF DIABETIC EYE DISEASE," <u>HTTPS://RESEARCH.GOOGLEBLOG.COM/2016/11/DEEP-LEARNINGFOR-DETECTION-OF-DIABETIC.HTML</u>.
- I. GOODFELLOW, Y. BENGIO, AND A. COURVILLE, DEEP LEARNING. THE MIT PRESS, 2016.
- A. Y. HALEVY, "DATA PUBLISHING AND SHARING USING FUSION TABLES," IN CIDR, 2013.
- H. GONZALEZ, A. Y. HALEVY, C. S. JENSEN, A. LANGEN, J. MADHAVAN, R. SHAPLEY, W. SHEN, AND J. GOLDBERG-KIDON, "GOOGLE FUSION TABLES: WEB-CENTERED DATA MANAGEMENT AND COLLABORATION," IN SIGMOD, 2010, PP. 1061–1066.
- M. J. CAFARELLA, A. Y. HALEVY, H. LEE, J. MADHAVAN, C. YU, D. Z. WANG, AND E. WU, "TEN YEARS OF WEBTABLES," PVLDB, VOL. 11, NO. 12, PP. 2140–2149, 2018.
- R. BAUMGARTNER, W. GATTERBAUER, AND G. GOTTLOB, "WEB DATA EXTRACTION SYSTEM," IN ENCYCLOPEDIA OF DATABASE SYSTEMS, SECOND EDITION, 2018.
- L. XU AND K. VEERAMACHANENI, "SYNTHESIZING TABULAR DATA USING GENERATIVE ADVERSARIAL NETWORKS," CORR, VOL. ABS/1811.11264, 2018.
- I. J. GOODFELLOW, "NIPS 2016 TUTORIAL: GENERATIVE ADVERSARIAL NETWORKS," CORR, VOL. ABS/1701.00160, 2017.
- E. D. CUBUK, B. ZOPH, D. MAN'E, V. VASUDEVAN, AND Q. V. LE, "AUTOAUGMENT: LEARNING AUGMENTATION POLICIES FROM DATA," CORR, VOL. ABS/1805.09501, 2018.
- J. MALLINSON, R. SENNRICH, AND M. LAPATA, "PARAPHRASING REVISITED WITH NEURAL MACHINE TRANSLATION," IN EACL. ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2017, PP. 881–893.
- M. IYYER, J. WIETING, K. GIMPEL, AND L. ZETTLEMOYER, "ADVERSARIAL EXAMPLE GENERATION WITH SYNTACTICALLY CONTROLLED PARAPHRASE NETWORKS," CORR, VOL. ABS/1804.06059, 2018.

Thank You