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et y(x) = £() + A [ KCx, )y()dt m»;%
be given Volterra integral equation of the second Kind . %
Suppose that

(i) Kernel K(x,t) # 0, is real and continuous in the %&

rectangle R for whicha < x < b,a <t < b.

Also, let|K(x,t)| < M, in R

e

(i) The functionf(x) # 0, is real and continuous in the

interval I, for whicha < x < b.

Also, let|f(x)| < N, in I (3)
(i) The Ais a constant (4)



Therefore, the equation (1) has a unique solution in%:
above equation (1) is given by the absolutely and unifokm
convergent series

ly%
y(x) = f(x) +?\jK(x t)f(t)dt +)\2fK(x t)jK(t tl)f(tl)dt%

a )
Re-writing equatlon(l),xwe have
Y0 = () + 4 [ KGoty(ede, 6) K
Replacing x by t in eqtfation (6), we have
y(© = £+ | Kt t)y(e)ds, (7

a
Putting the above value of y(t) in equation (1), we ob(;%

y0) = £+ [ KGo 0| £+ [ Kt edy(ede, | de (8) Yy

a i a




Re-writing equation (7), we have %
? )

y(©) = £(£) + A f K(t,t,)y(t,)dts

a

X

Replacing t by t;in equation (9), we have %

y(t) = f(t) + A j K(ts, t)y(t,)dt,

a e |
Substituting the above value of y(t;) in equation (8), w%
x . t
A A A 2 : ‘ A \/S'l{

P= &
] A (}




Proceeding the same as above, we have %

X X

t
y(x) = f(x) + A f K(x, t)f(t)dt + A2 f K(x,t) | K(t, tl)f(tl)dq%;

a a

X t tn_>
+?\"fK(x, t)JK(t, t1) ... f K(t,_o, t,_1)f(t,_1)dt,,_4 ZIE‘%

R wyn

a a

+Rn+1(x): (12)



Now, let us consider the infinite series %

X

X

f(x) +?\jK(x, t)f(t)dt+7\2JK(x, t)JK(t, t)f (t)dt,dt + - (14)

a

In view of the assumptions (i) and (ii), each term of#the
series equation (14) is continuous in interval I. It follows
that the series equation (14) is continuous in I, then7its

converges uniformly in I.

Let
X t tn_z
V. (x) =Aan(x, t)jK(t, ty1) ... f K(tn-z,tn-1)f(tnggdjn;1 Ldtidt

N \\N;\



From equation (15), we have %

|V, (x)| < |AM|NM™ b ;'a)n Using eq.(2) and (3) %

(b—a)"
|

V. (x)| < [A?|NM™ . a<x<bh

N[M(b — a)]"

TGOl < | ———

a<x<b

Clearly, the series for which the positive constant



Therefore, from equation (16), it follows that the ser
equation (14) converges absolutely and uniformly. ?gjl) %
has a continuous solution, it must be expressed by eq.(12).

If y(x) is continuous in I, |y(x)| must have a maximu%

value Y. Therefore |y(x)| <Y (17)

Now, from equation (13), we have ;%f

t tn—1

X
|Rn+1(x)| = 7\n-l_ljl{(x; t)jK(t; tl) f K(tn—l: tn)y(tn)dtn ---dtldt
a a

a

|7\|n+1YMn+1(X - a)n+1

(n+ 1)! ” M

|Rn+1(x)| <




|)\|n+1YMn+1(b . a)n+1
n+1\X)| = yasX s
Rps ()] < (a <x < b)

(n+1)! %

Hence lim,,,, R,4+1(x) = 0.

It follows that the function y(x) satisfying equation (12N

the continuous function given by the series eq,. (14)%% x

Q. Determine the resolvent kernels for the Fred




Sol: We know that iterated kernels K,,,(x, t) %

%

K;(x,t) = K(x,t) (1)
1
K0 = | K21 (2, 0z 2) 5; i;ﬁ
From equation (1) Ki(x,t) = K(x,t)=e**t €)

C I NE [1dVEC




Putting n = 3 in equation (2), we have %
] *

K;(x,t) = j K(x,z)K,(z,t)dz

e 2 __ 1 XA AR

as before ..... ..... and so on. Now, observing the equation (3), (4) an




Now, the required resolvent kernel is given by

RGGEN) = Y A Ky, 6) = Z -1t (e_
m=1

R(x, £: 1) = ¥+t Z [ (e = 1)]
"

| e?—-1

But D= 1[}\( —1+A( >




<1 (9) %

Now, using equation (8) and (9), equation (7) reduces to

Provided ‘}\(ez — 1)
2

X+t
R(x,t; ) = ce Provided Al <
(2 —2A(e?2—-1))

|




(2) yx)=x+ )\j xty(t)dt %
0

: %

x 1
€) y(x) = sinx —Z+ijty(t)dt
0]
3 1 11 r
() = 5% —gxe* —5 +3 | ty@de SR
(4) Y =3¢ 73 2" 2) " S
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