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Mathematical Expectation: Let X be a random variable having a
probability distribution function f(x). Expected value of the random
variable is the arithmetic mean of the random variable. The mean or
expected value of the random variable u(X), Then

If X is discrete type of random variable

If X is continuous type of random variable
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Special Mathematical Expectation: Let u(X) = X, where X is a random 
variable of the discrete type having a p.d.f. f(x). Then

1. Mean of the random variable is E[X] = µX

2. If a is constant, E[a] = a

3. If a and b are constants, E[aX ± b] = a E[X] ± b

4. E[f(X) ± g(X)] = E[f(X)] ± E[g(X)]

5. Variance of the random variable 

X
2 = Var[X] =E[(X − µX)2] = E[X2] − E[X]2

6.  If a is constant, Var[a] = 0

7.  Var[aX ± b] = a2 Var[X]



Example (i) In a gambling game a man is paid Rs. 5 if he gets all heads or
all tails when three coins are tossed, and he will pay out Rs. 3 if either one or
two heads show,. What is his expected gain?

Solution: The sample space for the possible outcomes when three coins are
tossed simultaneously, or equivalently if 1 coin is tossed three times, is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}.

The amount the gambler can:

win is Rs.5; if event     

E1 = {HHH, TTT} occurs and 

lose  Rs.3; if event 

E2 = {HHT, HTH, THH, HTT, THT, TTH} occurs.



Since E1 and E2 occur with probabilities 1/4  and  3/4 respectively, it 
follows that

In this game, the gambler will on an average lose Rs. 1 per toss of 
the three coins.  
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Example (ii) Let X be the random variable that denotes the life in hours 
of a certain electronic device.  The probability density function is

Find the expected life of this type of device.

Solution: We have,

Therefore, we can expect this type of device to last, on average 200 
hours.
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Example (iii) Suppose that the number of cars X that pass through a car
wash between 4.00p.m and 9.00p.m. on any day has the following
distribution:

Let g(X) = 2X – 1 represent the amount of money in rupees, paid to the
attendant by the manager. Find the attendant’s expected earnings for this
particular time period.

Solution: The attendant can expect to receive

x 4 5 6 7 8 9
P(X = x) 1/12 1/12 1/4 1/4 1/6 1/6
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Example (iv) Let X be a random variable with density function

Find the expected value of g(X) = 4X + 3.

Solution: we have
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Example (v) The weekly demand for a drinking-water product, in
thousands of liters, from a local chain of efficiency stores is a continuous
random variable X having the probability density

Find the mean and variance of X.

Solution: Calculating E(X) and E(X2), we have
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Moment Generating Function: Moment generating function (MGF) of
a r.v. X (discrete or continuous) is defined as E[etX], where t is a real
variable and denoted as M(t).

i.e., M(t) = E[etX]

If X is discrete type of random variable

If X is continuous type of random variable

Also,  we have,
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Example(i) If X represents the outcome, when a fair die is tossed, find
the MGF of X and hence find E(X) and Var(X).

Solution: The probability distribution of X is given by

P(X = i) = 1/6, i = 1,2,3,4,5,6
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Chebyshev's Inequality If X is a random variable with mean  and
variance 2, then for any positive number K, we have

or

Proof: We know that
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From the first Integral From the second Integral
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Hence

Also we know,

Example (i) A discrete RV X takes the values −1,0,1 with probabilities
1/8, 3/4, 1/8 respectively. Evaluate P[|X − |  2] and compare it with
the upper bound given by chebyshev’s inequality.

Solution:
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We have,

Using Chebyshev’s inequality,
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Example (ii) Let X be a continuous random variable whose probability
density function given by f( x)=e− x , 0  x  . Using Chebyshev’s
inequality verify

and show that actual probability is e−3 .

Solution: We have 
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Therefore,

Using the Chebyshev’s inequality,
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Two Dimensional Random Variables: Let S be the sample space. Let X=
X(S), Y= Y(S) be the two functions each assigning a real number to
each outcome s  S then (X, Y) is a two dimensional random variable.

If the possible values of (X, Y) are finite or countably infinite, then
(X, Y) is called a two dimensional discrete random variable.

If (X, Y) can assume all values in a specified region R in the (X, Y)
plane then (X, Y) is called a two dimensional continuous random
variables.



Joint Probability Function:

1-Discrete Random Variables: If (X,Y) is a 2-dimensional discrete random
variable such that

P(X = xi, Y = yj) = pij

Then pij is called the joint probability mass function provided the following
conditions satisfied

1. pij  0

2.

2-Continuous Random Variable: If X and Y are continuous random
variables with f(x,y) is called the joint probability density function provided
the following conditions are satisfied

1. f(x, y)  0

2.
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Marginal Probability Function: If the joint probability distribution of two 
random variables X and Y are given 

1- Discrete Random Variables

Marginal probability function of X is given by 

Marginal probability function of X is given by 

2- Continuous Random Variables

Marginal probability function of X is given by

Marginal probability function of X is given by
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Marginal Distribution Function

1-Discrete Random Variable: The collection of pairs {xi, pi*} where i
takes the value 1, 2, 3, … etc. is called the Marginal distribution of X.
Similarly the collection of pairs {yj,p*j} where j takes the value 1, 2, 3, …
etc. is called the Marginal distribution of Y.

2-Continuous Random Variable: If the joint distribution of the random 
variables X, Y is F[x, y], then 

the marginal distribution of X is 

the marginal distribution of Y is
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Conditional Probability Density Function

Discrete Random Variable

Conditional Probability of X given Y = yj is given by

Conditional Probability of Y given X = xi is given by
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Continuous Random Variable

The conditional probability function of X given Y 

The conditional probability function of Y given X 
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Conditional Expectation: Let f(x,y) be the joint probability density 
function of X,Y and u(Y) is a function of y. Then the conditional 
expectation  of u(Y), given X = x is

In particular,

Conditional Mean,

Conditional Variance,
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Example (i) Find the marginal distributions given that the joint 
distribution of X and Y is,

where X = 1, 2, 3; Y = 1, 2. Also determine the conditional mean and 
variance of X, given Y=1.

Solution: 
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2 3/21 4/21 7/21
3 4/21 5/21 9/21
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• Marginal Distribution of X

• Marginal Distribution of Y

X 1 2 3

5/21 7/21 9/21*ip

Y 1 2

9/21 12/21jp*

===
j

ijii ppxXP *)(

===
i

ijjj ppyYP *)(



• Conditional mean

• Conditional Variance

X
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Y
X

1 2 3

0 3 k 6 k 9 k 18k
1 5 k 8 k 11 k 24k
2 7 k 10 k 13 k 30k

15k 24k 33k 72k

Solution: Since                         ,  k = 1/72 =

j i
ijp 1

Example (ii) Joint probability mass function of X , Y is given by P(x,

y) = k (2x + 3y) ; x = 0, 1, 2; y = 1, 2, 3. Find all the marginal and

conditional probability and also find probability distribution of X + Y.



• Marginal Distribution of X

• Marginal Distribution of Y

X 0 1 2

18/72 24/72 30/72*ip

Y 1 2 3

15/72 24/72 33/72jp*
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Conditional probability distribution of X given Y = yj
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Conditional probability distribution of Y given X = xi
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• Probability distribution of X + Y

X + Y Probabilities
1 3/72
2 11/72
3 24/72
4 21/72
5 13/72



Example(iii) Given joint probability density function

1. Find

2. Find the marginal density function of X and Y. 
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Solution: 1.

0<1<x<y<5                             0<x<y<5
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Covariance: If X, Y is a two dimensional random variable then the 
co-variance of X and Y is denoted by Cxy and defined as

Cxy = E[(X −E(X)) (Y − E(Y))] = E[XY] − E[X] E[Y]

Note: yxxyC 



Correlation: The coefficient of correlation between X and Y is denoted 
by

where 

,

Note: If X and Y are independent random variables, then

E(XY) = E(X)E(Y)

Cxy = 0  xy = 0

yx

xy
xy

C


 =

2

222

)]([

)]([][

XEXE

XEXEx

−=

−=

2

222

)]([

)]([][

YEYE

YEYEy

−=

−=



In a bivariate distribution if the change in one variable
effects the change in other variable, the variable are said to
be correlated. If the increase (or decrease) in one variable
results in the corresponding increase (or decrease) then the
correlation said to be positive correlation of direct
correlation. If the increase (or decrease) in one variable
results in the corresponding decrease (or increase) then the
correlation said to be negative correlation of inverse
correlation.



Example: Let the random variables X and Y have the joint 
probability function

Find the correlation coefficient.

Solution:
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