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Moment Generating function: Let f(X,y) denote the joint probability density
function of the two random variables X and Y. If E[e****"]exists for —h, < t,
< h,,-h, <t, <h, where h; and h, are positive, it is denoted by M(t, , t,)
and Is called the moment-generating function of the joint distribution of X
and Y.

Hence, the Marginal Distribution of X and Y are
M (t,,0) = E[e"" ]= M (t,)
and M(0,t,) = E[e""]=M(t,)

Also, S
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Independence of Two Random Variables:

(1) Two random variables X and Y, forming a discrete random
variable, are independent if and only if: Pij = pxj - pj*

where p; is their joint probability mass function and P~ and P+ are
their marginal probability mass functions.

(2) Two random variables X and Y, forming an absolutely continuous
random variable, are independent if and only if: f(x,y)= fx (x) fy (y)

where f(x,y) IS their joint probability mass function and f,(x) and
f, (y) are their marginal probability mass functions.

* Let the stochastically independent random variables X and Y have the
marginal probability density functions f,(x) and f,(y) , respectively.
Then E[XY]=E[X]E[Y]



Example: Let eV, 0<X<y<w
P f(x,y) = Y
0, elsewhere

be the joint probability density function of X and Y. Find the moment
generating function of this distribution.

Solution: Moment Generating Function of X and Y,
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Discrete Probability Distributions

1-Bernoulli Distribution: A random variable X is said to have a
Bernoulli distribution with parameter p If its probability mass function
IS given by:

p*1-—p)™*

PX=x)= o

,forx=0,1
=0 otherwise.
The parameter p satisfies 0<p<1. Often (1-p) Is denoted as @.



2-Binomial Distribution: If X 1s discrete random variable which can
take values 0,1,2,3,...,n such that P(X =x)=nC_p*q"™* ,Xx=0,1,2,....,n
where p+qg=1 then X is said to follow a Binomial distribution with
parameters n and p.

Moment Generating Function of Binomial Distribution:
M (t) = E[e" ]

- Ye"p,
x=0
= > e"nC,p'q"”
x=0
:inCX(pet)an_X’ (a+b)n :Zn:nCrafbn—r
= r=0

=(pe' +0q)



Derivatives of MGF,
M'(t) = n(pe' +g)"" x pe'
M"(t) = np[(pe' +a)"" xe' +(n-1)(pe’ +q)" "~ pe”]
Mean and Variance of Binomial Distribution
E(X)=M'(0)=np

E(X?)=M"(0) =np[L+(n-1)p]
Var(X) = E(X %) -[E(X)]* = npq
Mean :np
Variance : npq



Example: In a large consignment of electric bulbs 10 % are defective. A random
sample of 20 is taken for inspection. Find the probability that (i) All are good bulbs
(i1) at most 3 are defective bulbs (ii1) Exactly there are three defective bulbs.

Solution: Let X be the event of defective bulbs,
pP=01 g=09 n=20
(HP(X =0) = 20C, (0.1)° (0.9)*° = 0.1216

(IP(X <3) =p(0) + p(1) + p(2) + p(3)
= 20C, (0.1)° (0.9)20 +20C, (0.1)! (0.9)™
+ 20C, (0.1)3 (0.9)18 + 20C, (0.1)3 (0.9)7
= 0.8666
(iii)P(X = 3) = 20C, (0.1)3 (0.9)%7 = 0.19.



3-Negative Binomial Distribution: Let p(x) be the probability that
exactly x + r trails will be required to produce r success. Clearly the last
trial must be a success and the probability Is p. In the remaining x + r —
1 trials, there must be r — 1 successes and the probability of this Is given

by _ r. X _
o(X =x) = *FT=DCr1p’q", x=0123..
0, otherwise

Moment Generating Function of Negative Binomial Distribution:
M(t) = e”p,

D e¥(x+r-1C,,p'q"
x=0

p' i (X+r1 —1)Cr_1(qet )X
x=0
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n(n+1) 42 4 n(n+1)(n+2) ,
) 3 a’+....

1a”_1+ a+
v (1-a) T

M(t)=p"(1-qe")" , for t<-log,q
Derivatives of MGF,

M'(t)=p"(-r)@—qe") " (-ge') =rp'ge'L—qge') "
M(t) = rp'gle! (—r —1)(1- ge') " (~qe’) + €' (1-ge’) "]
= rp'g(1-qe') e [(r +1)(L-ge") *(ge’) +1]



Mean and Variance of Negative Binomial Distribution:
Mean, E[X]=M'(0)=rp'gqe’(l—qge’) "
=rp'q(l-a)"
=rp'ap™
_"
P
E[X*1=M"(0) =rp'q(l-qe’) "e’[(r +1)(1-qe’) "(qe’) +1]
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\Variance ,

Var[X]= E[X?]- E[X T
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Example: Find the probability that In tossing 4 coins one will get
either all heads or all tails for the third time on the seventh toss.

Solution: PHHHH)=1/16; P(TTTT)=1/16
P(all head v all tail) =1/16 + 1/16 = 1/8
-.p=1/8, g=7/8 , X+r=7, r=3

P(X =x)=(x+r-1Cr_1p"'q”*

l 3 7 4
P(X =4) :7—1C31£§j (gj

o)

=0.0169



Example: In a company 5% defective components are produced. What is
the probability that atleast 5 components are to be examined in order to
get three defectives?

Solution:
Given, p=0.05 g=0.95 ; X+r<5, r=3
P(X =x)=(x+r-1Cr_1p"'q”*
P(X>2)=1-P(X<2)
=1-P(X=0)-P(X=1)
=1-2C,(0.05)3 (0.95)° - 3C, (0.05)° (0.95)*
= 0.9995.



A-Trinomial Distribution: The binomial distribution can be generalized
to the trinomial distribution. The random variables X and Y is said to
have trinomial distribution is If they have the joint probability density
function f(x,y) given by,

f(xy)=—

ﬂyKn;x—yﬂ

Py pyps

where x and y are non-negative integers with
x+y<n and P P2 Ps are positive proper fraction with P +p,+p; =1



5-Multinomial Distribution: The trinomial distribution is generalized to
the multinomial distribution as follows:

If a given trial can result in the k outcomes E,E,, . . ., E, with
probabilities p,, Py, . . ., Py, then the probability distribution of the
random variables X, X,, . . . , X,, representing the number of
occurrences for E,,E,, . .., E, In n Independent trials, Is

- X X X, X
f (X, X000 X ) = | P P2 P P
k-

- ) X X0 X TX
with > x,<n and .Zo: pi =1
Moment Generating Function of Multinomial Distribution:
M(t,t,,.t_ )= [pletl +P,e% +...+ P, &% + pk]n



6-Poisson Distribution: If X Is a discrete random variable that can
assume the values 0,1,2,... such that its probability mass function is
given by
e X _ .
P(X =x) = x=01.2,.....4>0.

Then X is said to follow a Poisson distribution with parameter A .

Poisson distribution is a limiting case of binomial distribution under
the following assumptions.

* The number of trials ‘n’ should be indefinitely large. 1.e., N — oo.
* The probability of successes ‘p’ for each trial 1s 1ndeﬁn1tely small.
* np =4, should be finite where A Is a constant.




Moment Generating Function of Poisson Distribution:

M) = e*p,
x=0

_ i o €A
x=0 X!
00 t X 00 n
> (e') . a
— : e = —_
XZ_(; X! nz_(; n!
_ e—zee%



Mean and Variance of Poisson Distribution:
M'(t) = e % Ae!
M”(t) = Ae” [e (%% 2e') +e° e t]
E[X]=M'(0)=e*e** 11 = A
E[X *]=M"(0) :/Ie‘”[eo(ee%/ieo)+ee 4 °] ae 1o +et|= 2+ 2

Mean , E[X]=A4
Variance,Var[X]=E[X*]-E[X] =X+ 1-1" =1



Example: A random variable X follows Poisson distribution and if
P(X=1) = 2P(X=2),

find (1) P(X = 0)
(i1) S.D. of X.
Solution: Given that P(X=1) = 2P(X=2)

e—/'t/ll e—ﬂ,//LZ
TR

= A=1

e * A

(i) P(X =0)= —e1=0.3679

(i) S.D. of X =+varX =1 =1



Continuous Probability Distribution:

1-Exponential distribution: A random variable X is said to have
exponential distribution with parameter a > 0 If its probability density
function is given by

fx)=ae ™ ®*, x>0

= (0, otherwise



Gamma Function: In Integral Calculus, the integral

['(«) :J'y“‘le‘ydy, a>0
0

Is called the gamma function, with
[Na+1) =al(x)
[Na+1) =a!
r@)=1
r1/2)=r

W



2- Gamma Distribution: A random variable X is said to have
gamma distribution with parameter o If I1ts probability density
function is given by

X

X“"e /
f(X) =+ , O<Xx<ow

['(a) p*

0, elsewhere




Moment Generating function of Gamma Distribution:

M (t) = E[e™ ]

X

—1

.
! Y

v ‘1e_y
I(lﬂtj ( py jdy

Ma)p”  \1-pt




— 1 ﬁ i a-1,-y
MO g i) [

__ 1 ('B jgl“(a)
[a)p* \1-pt

1
=@L-p),  ift<=
(1-7A) <>

Also M'(t) = ep(L-2p) "

M"(t) = a(a+1) % Q- pt)
Mean, E(X)=M'(0) =ap
E(X?)=M"(0) = a(x +1),82

Variance, var(x) = E(X?) - E(X)? = a’B + af* — o’ % = aff’



3-Normal Distribution: Let X be a continuous random variable have a
normal distribution with parameter a (mean) and b# (variance) if its
probability density function is given by the probability law:

f(x) = — e_%(X;aJ,—oo<X<oo,b>O

b2




Moment Generating Function of Normal Distribution: The moment

generating function is e
M(t)=e 2

and M'(t) = (a+ bzt)eat+

bt?
2

bt? b%t?
t———

M(t) = (a+b%t)2e" 2 +ble 2

Mean, 1 =E[X]=M'(0)=a
E[X?]=M"(0) =a* +b?

Variance, o® =Var[X]=E[X*]-E[X]* =a® +b* —a* =b*




Theorem: If the random variable X is n(i,c4) then the random variable
W=(X - w/o isn(0,1)

Proof: Let G(W} and g(w) be the distribution and density function of W
and W=(X - W)/c.

G(w) = P[W < w]

—p| 2T <
L G —

=PI X < u+ow

X=1+OW 1 x—p\’

— ? ! e_E( “ﬂj dx
e OAN2T

Let, y = Al l.e,X = u + yo,.. dx = ody

o
when x = —00,y = —00;X = (1 + Wo,Y = W



Hence

which i1s n(0,1)

G(w)=j 1 e 2 ody

ym o ON 2T
1w
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1(w—-0)"
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= e , —00< W< o0
N 27



Bivariate Normal Distribution: Let X and Y be two random variables
having the joint probability density function

f(x,y) L e
X, Y)= €, —0< X<, —o<Y<©
276,06 ,+1— p°

2 2
1 : (X_ﬂl) _2p£x_ﬂ1](y_ﬂ2]+(y_ﬂ2] |
1-p o o, o, o,

where q=

c,>0,0,>0 -1<p<l

then X and Y are said to have a bivariate normal distribution.



Theorem: Let X and Y have a bivariate normal
distribution. Prove that marginal probability density
function of X and Y are respectively

n(u,0l) and n(w,,02) and p is the correlation
coefficient between X and Y.



Proof: Marginal densﬂy function of X,

f(x)_jf(xy)dy j 1\/17
" 27100, P
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o,

.4 1 y_b2+l X=H 2
2 21-p)| o, 2\ o,
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A
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T f(x)dx =1,

Normal p.d.f. with mean b and variance oZ(1- p°)



Now,

1 y—b 2
f(x,y) 1 ‘E{a HJ
f(y/x)= = ’ ,—00 < Y <o
LX)y 210,1— p°
Which is n(b,o>(1- p?))
Here b is the conditional mean of Y given X = X,

. b= EIY /X]= 41, + p~ % (X~ 1)
Similarly, o

E[X /y]= u1+p°'1 (y— 1)
Coefficient of x Iin E[Y/X] x Coefﬁ(:lent of y In E[X/y]

= o, 0,
P_XP__P
0, o,



Moment Generating Function of Bivariate Normal Distribution:

M (tl,tz) _ E[et1x+t2Y]

= jjetlx”zyf(x y)dxdy

_w_

f(x,y)

- [ev fl(x{ [ewrf (y/x)dx} dye P ==

Since f e” f(y/x)dx js the moment generating function
of the conditional probability functlon f(y/x). Also f(y/x)
is a normal p.d.f. with mean # +p 02 (X—14)

and variance o2(1-p?) . 1




Tetzy F(y/X)dx = eH S

thus,

o t252
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M(t,,t,) = Tetlx fl(x)eH o : }dx

o tio2 o
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Also f,(x) Is the normal p.d.f. with mean . variance o;



2 2
Moty —Pﬂﬂtz) +t22622 (1-p?) ﬂl(tﬁtzpﬂ}a—l(tﬁtzpﬂj
M (t t ) = e 91 2 e o) 2 o1
11%27

0'12t12 +022t22 +2 pooot, )
2

[ﬂltﬁﬂztz +
e

Which is the moment generating function of bivariate normal distribution.
It is to note that, If p=0, then M(t,,t,) =M(t,,00M(0,t,).

Thus X and Y are independent when o =0.



Transformation of Random Variables: If X and Y are random variables
with joint probability density function 1, (x,y) and If Z = g(X,Y) and
W = h(X,Y) are two other random varlables then the joint probability

density function of Z and W is given by f,, (z,w) = f,, (x,y)|J|
where oX  OX
_oXY) oz ow
o(z,w) |0y oY
0Z OwW

IS called the Jacobian of the transformation
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