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• The properties of a system vary with time about

the mean equilibrium values. It has been observed

that in the neighborhood of a critical point,

fluctuations in some thermodynamic quantities

e.g. pressure (P), energy (E), entropy (S) and

specific heat (CV) are predominant.

• So, far we have assumed that the fluctuations in

these thermodynamic quantities are quite small.
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• In a system which contains small number of

particles in equilibrium with its surroundings,

fluctuations are violent.

• So, to represent the thermodynamic quantities of a

system more precisely, fluctuations in these

quantities should be calculated.
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• If energy (E) fluctuations in the system of a

canonical ensemble are small, it is equivalent to a

microcanonical ensemble.

• If both N and E of the system in a grand canonical

ensemble fluctuate negligibly then all the three

ensembles are equivalent.
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Mean-square Deviation

• Consider a quantity n. Its average value is or

The deviation δn of the quantity from its average

value is defined by –

Rough measure of the fluctuations is provided by

the mean-square deviation
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is called the second moment of the distribution.

The standard deviation Δn, the root mean square

deviation from the mean is defined as -

Let Pi be the probability of finding a system in the

state i and if fi is the value of a physical quantity f

when the system is in the state i then average

value of f is defined by - 6
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Then,

and
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Fluctuations in Energy

• Consider a ‘closed system’ in thermodynamic

equilibrium at a given temperature and is

represented by a canonical ensemble.

• Since, in this ensemble, system is in thermal

equilibrium with a heat reservoir so fluctuations can

not occur in temperature but only in energy when

the energy is exchanged between the system and the

reservoir.

8



The canonical partition function is
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A measure of energy fluctuation is the ratio

As we know that for an ideal gas,

and
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Grand-canonical Ensemble:

Fluctuations in energy can be calculated as done for

the case of canonical ensemble. Herein, we study

the possibility of concentration fluctuations.

The partition function can be written as –

where θ = kT

Average number of particles is given by –
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But, for an ideal classical gas,

Thus, concentration fluctuation is given by -
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Concentration fluctuations in 

Quantum Statistics

• The variation of average number of particles in

the single particle quantum state, i for the system

obeying quantum statistics (FD & BE) is given

by –
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from eqn. (15)

or,
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One-dimensional Random Walk

• Consider the motion of a drunk sailor who has lost

the sense of direction, takes a random walk in one-

dimension.

• Suppose he takes N steps each of equal length l.

Let each step be random , i.e. to the forward or

backward direction. Each step has a probability of

½ being in either direction.

• Now, we have to find the probability of the drunk

person that he is at a distance x from the starting

point after such a walk. 16



Let P(m, N) be the probability that the person is at a

point m steps away after N steps. The probability

of any given sequence of N steps is (1/2)N.

Hence,

where W(m) is the number of distinct sequences that

reach m after N steps.

To reach at the point m, some set of

steps out of N must be positive and the remaining
17
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steps must be negative. Therefore,

the number of distinct sequences that reach m is –

For large N, the exact form of Stirling’s approx. is

given by -
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Then,

since, m<<N, then

using

Therefore, from eqn. (iv)
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or,

as x=ml and m=n1-n2=n1-(N-n1)=2n1-N

So, the probability that the sailor is between x and

(x+dx) after N steps is –

Here, dx=2ldm as m can take integral values

separated by Δm=2.
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Hence, the probability that a person is at a distance

x after N steps is –

This is the normal or Gaussian distribution which

is of the form
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Let us assume that the sailor takes N=nt steps in time

t. Then, the probability of the sailor being in the

interval dx at x after time t is –

The mean square distance travelled is given by the

mean square fluctuation -
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Thus, a random walk is what particles execute

when they diffuse and the particle diffusion

coefficient (D) defined by –

where τ is the time taken for each step then t=τN

Therefore, the probability that the sailor will be

within dx at x at time t if he was at x=0 at t=0 is -
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