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• Generally, substances exist in three types of

phases: solid, liquid and gas. Phase diagram of a

pure substance is shown below.

• The three lines separating the phases are called

phase equilibrium lines and the common point

where all the three phases co-exist in equilibrium

with each other is known as ‘Triple point’. 3



• Consider a system whose phases are in equilibrium

and a small change in external conditions results in a

certain amount of the substance passing from one

phase to another. This is known as phase transition.

• Since, Gibbs free energy is a function of T, P and

number of particles (N). So, at constant T and P,

Gibbs energy is proportional to the number of

particles, i.e.

Where g(T, P) is Gibbs free energy per particle.
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Hence,

First order Phase Transition: Consider a vapor-

liquid mixture in equilibrium at vapor pressure P

and temperature T.

We know that,

Further,

from (iv) and (v), we get
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If the derivatives and are

discontinuous at the transition point, i.e. V and S have

different values in two phases and the transition is called

first order phase transition.

In first order phase transition-

i. The first order derivatives of Gibbs function change

discontinuously.

ii. There is a change in volume, entropy and latent heat.

iii. Density changes discontinuously at transition

temperature and pressure. 6
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Figure: First Order Phase Transition, Temperature variation of (i) Gibbs

function, (ii) Entropy and (iii) volume [Garg, Bansal & Ghosh]



Second order Phase Transition:

As we found that in first order phase transition,

are discontinuous at the transition point. If

these derivatives are continuous but higher order

derivatives are discontinuous at the transition point

then the phase transition is known as second order

phase transition.

In second order phase transition,
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o e.g. transition of liquid He I into liquid He II

o Transition from a non-ferromagnetic state to a

ferromagnetic state (Ising model)

o A phase transition of second kind in contrast to first

order phase transition is continuous in the sense that

the state of the body changes continuously but

discontinuous in the sense that symmetry of the body

changes discontinuously.

In a phase transition of first kind, the bodies in two

different states are in equilibrium, while in a phase

transition of second kind, the states of two phases

are the same. Second order phase transitions are also

called order-disorder transitions.
9
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Figure: Second Order Phase Transition, Temperature variation of (i)

Gibbs function, (ii) Entropy, (iii) volume and (iv) specific heat
[Garg, Bansal & Ghosh]



Critical Exponent

• It is a matter of common experience that when

the temperature of a substance changes, phase of

the substance also changes. But the basic problem

is to study the behavior of a system in the

neighborhood of the critical point.

• As freezing of water takes place at 273 K

whereas boiling takes place at 373 K at a fixed

pressure of 1 atm. When pressure is changed,

phase change occurs at different temperatures.
11



• If we see the phase diagram of water, at T=373 K

and P=1 atm., water exist as a high density liquid or

low density vapor.

• But when latent heat is added at constant

temperature and pressure, liquid is converted into

vapor. If temperature is further increased then a

region is observed where density difference between

liquid and vapor goes to zero.

• In this region, water and steam become

indistinguishable and where liquid-vapor co-

existence curve terminates is called the critical

region. 12



• So, besides water-steam system, there are many

more systems which show critical behavior, e.g.

liquid-gas system, ferromagnets, ferroelectrics,

binary alloys, superfluids and superconductors etc.

• In most of the systems one phase is ordered while

the other one is disordered.

• Therefore, it is customary to introduce a parameter

which vanishes at critical point and above it which

is known as order parameter. e.g., for liquid-gas

system, order parameter is determined by the

density difference between the liquid and gas

phase. 13



• As T approaches critical temperature TC, then

density difference across the curve varies as –

where β is called critical exponent.

Different Critical Exponents

In addition to β, there are also some other critical

exponents.

a) Critical exponent, α: It is associated with the

behavior of specific heat in the vicinity of critical

temperature as -
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b) Critical exponent, γ: It is related to the critical

behavior of generalized susceptibility as –

c) Critical exponent, δ:

i. Relation between external magnetic field and

magnetization at critical temperature as –

ii. Relation between pressure and density at critical

temperature as -
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• Scaling relations:

To reduce the independent number of different

exponents, scaling relations are used.

Rushbrooke scaling law: α+2β+γ=2

Widom scaling law: γ=β(δ-1)
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Phase Transitions of the Second 

Kind: Ising Model

• Consider a ferromagnetic substance like nickel

and iron. As T<Tc, some of the spins of atoms

become spontaneously polarized in the same

direction, giving rise to a macroscopic magnetic

field.

• As T>Tc, then thermal energy makes some of the

aligned spins to flip over. Thus, spins get

randomly oriented and no net magnetic field is

produced.
17



• The transition from non-ferromagnetic state to

ferromagnetic state is called the phase transition

of second kind. It is associated with some kind of

change in the symmetry of the lattice. In

ferromagnetism, symmetry of spins is involved.

• Ising model assumes the significant interaction

between neighboring molecules. In Ising model,

the system considered is an array of N-fixed

points called lattice sites which form an n-

dimensional periodic lattice.

18



• With each lattice site, a spin variable (si) is

associated which is a number that is either +1 or -

1. If si=+1 then it is said to be in up direction and if

si=-1, it is said to have down spin.

• A given state of <si> specifies a configuration of

the whole system whose energy is given by –

where subscript I stands for Ising and the symbol <i,j>

represents the nearest-neighbour pair of spins. εij is the

interaction energy and μH is the interaction energy

associated with external magnetic field.
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• For an isotropic interaction, εij=ε

• ε>0 corresponds to ferromagnetism and ε<0 to

antiferromagnetism. In stable equilibrium, the

energy E trends to be minimum.

• Therefore, for configuration of least energy, all the

atomic spins are completely polarized/ordered in

the same direction. Sum over <i, j> constants γN/2

terms where γ is the number of nearest neighbours

of any given site.
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• For the case of ε>0, partition function is given by –

where si ranges independently over the values ±1.

There will be 2N terms in the summation.

Bragg-William’s Approximation: Standard 

Mean Field Approximation

• It was assumed that the distribution of spins is at

random. Let on a given site, N+ be the number of

spins for which si is +1 and N- be the number of

spins for which si is -1. 21
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N+/N is the probability of finding a spins up (+1)

and N-/N is the probability of finding a spin down

(-1) on a given lattice site.

from eqn. (i),

γ is the number of nearest neighbours of a site and

N=N++N- is the number of spins. Assumed N+>N-

in the last term.

If magnetic moment associated with the spin is μB,

then
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similarly,

from (vi) and (vii),

putting the values in eqn. (iv), we get
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Where m is a long-range order parameter ranging

from -1≤m≤+1 represents magnetization in a

ferromagnetic system.

Therefore, the number of arrangements of spins over

the N sites will be given by the number of ways in

which one can pick N+ things out of N, i.e.

Using Stirling’s approx. and after solving above, we

get
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Now, entropy of the system becomes,

Helmholtz free energy is given by – F=E-TS

So, from (x) and (xii), we get
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For equilibrium values of m,

It is well known result of Weiss theory.
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• For H=0, spontaneous magnetic moment is –

i. For

ii. For

ms=0 is not acceptable as it corresponds to maximum

of Helmholtz free energy, instead of minimum.

Thus, ms=0 for T>Tc and ms=±1 for T<Tc.
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Figure: Plot of saturation magnetization vs temperature
[Gupta & Kumar]



Assignment

1. Solve the problem of One-dimensional Ising model.

2. Write a note on order-disorder in alloys.
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For any questions/doubts/suggestions

→write at E-mail: neelabh@mgcub.ac.in
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