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The Fields of a Moving Point Charge

** In this lecture we will study about Liénard-Wiechert fields due to a

moving point charge.
*» To find the expressions for the fields (the electric and magnetic
fields) of a point charge in arbitrary motion, we will use expressions of

the Liénard-Wiechert potentials from the previous lecture X:
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+* As we know that relations for E and B:

**The differentiation is complicated, however, as

r=r—w(,) and v=w(t,) ] = ---=--mmm---- [4]

are both determined at the retarded time, and t, described

implicitly by the equation

Ir—wmnzcu—n}l ............. [5]

is a function of r and t.



¢ Let’s start with the gradient of V:
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Sincex=c(t-t),

V = =-CVt, I _____________ [7]

As for the second term, product rule provides

Vie:v)=(e-VIV+ (V- V) e+ex (VxV)+vx(Vxex) | -------------



¢ Calculating these terms one at a moment:
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Where a = v is the acceleration of the particle at the retarded time.

Now

v -V)e=(Nv-V)r-(v-V)w . [10]




and

o o o - A a
{1’-?)r:(1‘_i_——|—t'1.——|—r:.— XX+ yy+zz)
dx Ty dz

p— ll..l- i —|_ 111 j‘tl _|_ 1': i — 'fln.

while (V- V)w=v(v-Vt) |

(similar reasoning as Eq. 9). Moving on to the third term in Eq. 8,
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although V x r = 0, whilst, by the similar argument as Eq. 12,

V><W:-V><V’[r I """"""" [14]

Finally,



*»* Substituting all this back into Eq. 8, and utilizing the “BAC-CAB”

rule to short the triple cross products,

V(z-v)=a(z-Vt)+v—v(v-Vt)—ex(axVt)+vx(vxVt)

V(z- V)=V + (- a—v?) Vi, \ _____________ [15]

assembling Eqs. 7 and 15, we have
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“* To finalize this formulation, we require to know Vt,. This can be
established by taking the gradient from equation (Eq. 5) which we have
already done in Eq. 7—and expanding V «:
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But

(- V)e=2-V(e-Vt) | ------------- [18]

(similar thought as Eqg. 10), while (from Egs. 13 and 14)

Vxe=(vxVt) | """"""" [19]

Thus

—c Vt, =1/e[e— v(z - Vtr) + e x (v x V)] = /e [e— (2 - V) Vt ]




and thus

Incorporating this result into Eq. 16, we finish that
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A similar calculation,
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merging these outcomes, and setting up the vector

We get
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Meanwhile
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** We have already determined V x v (Eq. 12) and VV (Eq. 22).

Substituting these jointly,
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*** The quantity in brackets is noticeably similar to to the one in Eq. 24,
which can be marked, using the BAC-CAB rule, as [(c? - v?)u + (z - a)u -
(2-u)a];

**The key difference is that we have V’s in its place of u’s in the initial
two terms. In reality, as it is all crossed into z anyway, we can with
impunity alter these v’s into —u’s; the additional term proportional to «

vanishes in the cross product.



o l .
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It is clear that the magnetic field of a point charge is always

perpendicular to the electric field, and to the vector from the retarded

point.

+** The first term in equation (24), E (the one connecting (c? - v?)u falls
off as the inverse square of the distance from the particle.
s If the velocity and acceleration are both zero, then the equation

(24) turns into the old electrostatic result




+* For this basis, the first term in E is sometimes known as the well

familiar Coulomb field. (since it does not depend on the acceleration, it

is also called the velocity field.)

**The second term (the one linking = x (u x a)) falls off as the inverse

first power of « and is thus leading at large distances. This term is

responsible for electromagnetic radiation; hence, it is known as the

radiation field—or, since it is proportional to a, the acceleration field.




Numerical problems

1. Calculate the electric and magnetic fields of a point charge moving with
constant velocity.
2. Suppose a point charge q is constrained to move along the x axis.

Show that the fields at points on the axis to the right of the charge are given

s

by. p_ _¢ I(:)x B — 0.

dreg 2t \e—v

(Do not assume v is constant!) What are the fields on the axis to the /eft of
the charge?

3. For a point charge moving at constant velocity, calculate the flux
integral | E - da(using Eq. 10.75), over the surface of a sphere centered at the

present location of the charge.
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For any query/ problem contact me on whatsapp group or mail on me

E-mail: arvindkumar@mgcub.ac.in

Next *** we will discuss electric dipole radiation and numerical

problems based on radiation topic.






