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❖ In this lecture we will focus on radiation due to magnetic dipole.

In this regards first we will define magnetic vector potential due to

current carrying loop. Thereafter we will define electric and

magnetic fields for this system.

❖Consider now that we have a wire loop of radius b (Figure 1),

around which we drive an alternating current I, the expression for

this alternating current is defined as :
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Magnetic Vector Potential

[1]



FIGURE 1: Representation of current loop and 
point where the vector potential A.  ** [REF-1]
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❖ This is a model for an oscillating magnetic dipole, therefore the

expression for the magnetization m(t):

where
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[2]

[3]

❖ As the loop is uncharged, therefore the scalar potential is zero.



❖ Expression for the retarded vector potential is:

❖ For a point r directly over the x axis (Fig. 1), vector potential, A must

intend in the y direction, because the x components from

symmetrically located points on either side of the x axis will cancel.

Hence-
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(cos φ serves to choose out the y-component of dl). From the law of

cosines,

where ψ is the angle between the vectors r and b:

So rb cos ψ = r · b = rb sin  cos φ, and thus,

For a “perfect” dipole, we want the loop to be extremely small:
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So rb cos ψ = r · b = rb sin  cos φ, and thus,

❖ For a “perfect” dipole, we desire the loop to be very small:
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Approximation 1 : b << r

To first order in b, then,
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therefore

and

[10]
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❖ As previous to, we also suppose the size of the dipole is small

compared to the wavelength radiated:

Approximation 2 : b << c/
In that situation, 

putting Equations 9 and 10 into Eq. 5, and leaving the second-order term:
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❖ The first term integrates to zero:

❖ The second term engages the integral of cosine squared:
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Inserting this in, and noting that in general A points in the -direction,

At last we conclude that the vector potential of an oscillating perfect

magnetic dipole is-



❖ For the static case the limit (ω = 0), we get the well-known relation

for the potential due to a magnetic dipole-

❖ In the radiation zone,

Approximation 3 : r >> c/

the first term in A is small, so neglecting it
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❖ To find the Poynting vector we get the fields at large r from Potential A:

and
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Expressions for the Electric and Magnetic Field

❖We applied approximation 3 in finding B. These fields are in phase,

mutually perpendicular, and transverse to the direction of propagation , .

❖The ratio of their amplitudes is E0/ B0 = c, all of which is as likely for

electromagnetic waves.



❖ The energy flux for magnetic dipole radiation is

the intensity is
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❖ They are, in fact, really same in structure to the fields of an oscillating

electric dipole (in previous lecture), only difference is that B pointed in

the direction and E in the direction, while for electric dipoles it is the

other way around.

Poynting Vector and Total Radiated Power



and the total radiated power is

❖Once again, the intensity profile has the shape of a donut (Fig. 3), and

the power radiated varies like ω4.

❖There is, yet, one key difference between electric and magnetic dipole

radiation: For arrangements with comparable dimensions, the power

radiated electrically is extremely greater.

❖Comparing equation (24) from previous lecture-XII and equation (20),
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FIGURE 2: Representation of radiated power profile due to a magnetic dipole

through a sphere of radius r . **[REF-1]



Note: where m0 = πb2I0, and p0 = q0d. The amplitude of the current in

the electrical case was I0 = q0ω. Setting d = πb, for the sake of

comparison, we obtain:
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❖ However ωb/c is exactly the quantity we supposed was much small

(approximation 2), and here it shows squared. Usually, then, one

should suppose electric dipole radiation to dominate. Only when the

system is watchfully contrived to prohibit any electric contribution (as

in the case just treated) will the magnetic dipole radiation make known

itself.
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Numerical problems 

1. Calculate the electric and magnetic fields of an oscillating magnetic

dipole without using approximation 3. [Do they look familiar? Compare Prob.

9.35.] Find the Poynting vector, and show that the intensity of the radiation is

exactly the same as we got using approximation 3

2. Treating electric dipole to be equivalent to an accelerated charge, calculate:

(i) The dipole moment amplitude p0 in terms of charge q and acceleration a of

the accelerated charge.

(ii)Instantaneous rate of radiation from the charge.
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• For any query/ problem contact me on whatsapp group or mail on me

E-mail: arvindkumar@mgcub.ac.in

• Next *** we will discuss the Radiation from an Arbitrary Source

(Larmor formula) and numerical problems.
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