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Radiation from an Arbitrary Source

❖ In last lecture, we studied the radiation generated by two precise

arrangements: oscillating electric dipoles and oscillating magnetic

dipoles.

❖Here we want to use the similar methods to a arrangement of

charge and current that is fully arbitrary, apart from that it is localized

within some limited volume close to the origin (Fig. 1).

❖As we know that the retarded scalar potential is:

[1]
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where

❖ From earlier case, we shall suppose that the field point r is far away,

in comparison to the dimensions of the source:

Approximation 1 : r’ << r

(In fact, r’ is a variable of integration; approximation 1 indicates that

the greatest value of r’, as it varies over the source, is much less than

r.)

[2]



FIGURE 1: Arrangement of an arbitrary charge and current sources within a volume 
[**REF- 1]
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so [3]

On this statement,

and [4]
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❖ Expanding ρ as a Taylor series in t regarding the retarded time at the

origin,

We get the following form:

where the dot implies differentiation with respect to time.

[5]

[6]



8

❖ The higher order terms in this Taylor expansion would be

We can afford to leave them, given

Approximation: 2

❖ For an oscillating arrangement, each of these ratios is c/ω, and we

recover the old approximation 2. In the common situation it is more

difficult to understand Eq. 8, however as a procedural issue

approximations 1 and 2 amount to keeping just the first order terms in

r’.

[7]

[8]
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❖ Inserting eqs. 3 and 6 into the relation for V ( eq. 1), and again leaving

the second-order term:

❖ in above equation the first integral is just the total charge, Q, at time

t0. As charge is conserved, Q is independent of time. The other two

integrals correspond to the electric dipole moment at time t0. Hence-

[9]

[10]
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❖ In the static case, the first two terms are denoting to the monopole

and dipole contributions to the multi-pole expansion for V; the third

term, certainly, would not be present.

❖ Now, the expression for the vector potential is-

As you will look in a instant, to first order in r’ it suffices to replace r by

r in the integrand:

[11]

[12]
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Note- As the integral of J is the time derivative of the dipole moment,

so we can write it as:

[13]

❖ Therefore the expression for the vector potential can be written as:

Similarly,

[14]
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❖ Now you observe why it was needless to take the approximation of r

beyond the zeroth order (r  r): p is already first order in r’, and some

modifications would be corrections of higher order.

❖ Subsequently we must determine the fields. Once again, we are

concerned in the radiation zone (that is, in the fields that stay alive at

large distances from the source), thus we continue only those terms that

go like 1/r:

Approximation 3 : discard 1/r2 terms in E and B

As, the Coulomb field,

[15]
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arising from the first term in Eq. 9, does not add to the electromagnetic

radiation. Indeed, the radiation arises completely from those terms in

which we differentiate the argument t0. It is done as from Eq. 5:

and so

[13]

[14]
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whilst

Equations for Electric and Magnetic Fields

where     is calculated at time t0 = t − r/c, and

[15]

[16]

❖ From Lorentz condition, the expression for the electric field is, thus
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❖ In particular, if we utilize spherical polar coordinates, with the z axis in

the direction of (t0), then the expressions for the fields can be written as:

[17]

[18.a]

[18.b]

and
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Expression for Poynting Vector

❖ The Poynting vector is defined as:

Expression for Total Radiated Power

❖ Now the total power passing through a gigantic spherical surface 

at radius r is

[19]

[20]
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Since from previous study we have

[21]

Finally the total radiated power is 

❖ It is observe that E and B are mutually perpendicular, normal to the

direction of propagation , and in the ratio E/ B = c, as always for

radiation fields.



Numerical problems 
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1. A parallel-plate capacitor C, with plate separation d, is given an

initial charge (±) Q 0. It is then connected to a resistor R, and discharges, Q(t) =

Q 0e−t/ RC.

(a) What fraction of its initial energy does it radiate away?

(b) If C = 1 pF, R = 1000 , and d = 0.1 mm, what is the actual number? In

electronics we don’t ordinarily worry about radiative losses; does that seem

reasonable, in this case?

2. A current I(t) flows around the circular ring. Derive the general formula for the

power radiated, expressing your answer in terms of the magnetic dipole

moment, m(t), of the loop.
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• For any query/ problem contact me on whatsapp group or mail on me

E-mail: arvindkumar@mgcub.ac.in

• Next *** we will discuss the Radiation: Power Radiated by a Point

Charge and numerical problems.
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